PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 2, February 1997, Pages 417–425 S 0002-9939(97)03477-1

STABILITY OF THE LOCAL SPECTRUM

TERESA BERMÚDEZ, MANUEL GONZÁLEZ, AND ANTONIO MARTINÓN

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. We give some conditions implying the equality of local spectra

$$\sigma(x,T) = \sigma(f[T]x,T),$$

where $T: X \longrightarrow X$ is a (bounded linear) operator on a complex Banach space X, and f[T]x is defined by means of a local functional calculus. Moreover, we give conditions implying the stability of the local spectrum for the holomorphic and the meromorphic functional calculi.

1. INTRODUCTION

Let X be a complex Banach space and let T be a (bounded linear) operator defined on X. For every $x \in X$, the operator T has a local spectrum $\sigma(x, T)$ which is a useful tool in the study of the structure of the spectrum and the invariant subspaces of T.

The problem we address is the detection of vectors y which have the same local spectrum as a fixed vector x, namely

(1)
$$\sigma(x,T) = \sigma(y,T).$$

This problem has deserved the attention of several authors. In [2], Erdelyi and Lange prove that if T is an operator satisfying the Single Valued Extension Property (hereafter referred to as SVEP) and \hat{x}_T is the local resolvent function of T in x, then

(2)
$$\sigma(\widehat{x}_T(\lambda), T) = \sigma(x, T)$$

for all $\lambda \in \mathbb{C} \setminus \sigma(x,T)$. Moreover, if A is an operator which commutes with an operator T satisfying the SVEP, then

(3)
$$\sigma(Ax,T) \subset \sigma(x,T),$$

for all $x \in X$. In particular, if A has an inverse, then the expression (3) turns into an equality. It also follows, from the results derived by Bartle [1], that given $\lambda \in \mathbb{C}$ and $n \in \mathbb{N}$, we have

(4)
$$\sigma((\lambda - T)^n x, T) \subset \sigma(x, T) \subset \sigma((\lambda - T)^n x, T) \cup \{\lambda\}.$$

©1997 American Mathematical Society

Received by the editors May 18, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A11, 47A60.

 $Key\ words\ and\ phrases.$ Local spectrum, holomorphic functional calculus, meromorphic functional calculus.

Supported in part by DGICYT Grant PB 91-0307 (Spain).

Hence if $\lambda \notin \sigma(x,T)$, then

$$\sigma(x,T) = \sigma((\lambda - T)^n x, T).$$

Finally McGuire [7] shows that if T is an operator in a complex separable Hilbert space H with an empty point spectrum, and f is an analytic function on an open set $\Delta(f)$ containing $\sigma(x,T)$, not identically zero on any component of $\Delta(f)$, then

$$\sigma(f[T]x,T) = \sigma(x,T),$$

where f[T]x is defined by using the "Cauchy formula" with the local resolvent of T in x (see below).

In this paper we give conditions implying the equality

$$\sigma(x,T) = \sigma(Ax,T)$$

for certain operators A obtained from T using the meromorphic functional calculus or the local functional calculus. Our results include those of [1], [2] and [7].

2. Preliminaries

Let X be a complex Banach space. We denote by L(X) the class of all (bounded linear) operators on X, and by C(X) the class of all closed operators T with *domain* D(T) and *range* R(T) in X.

Given $T \in C(X)$, we have that λ belongs to $\rho(T)$, the resolvent set of T, if there exists $(\lambda - T)^{-1} \in L(X)$ such that $R((\lambda - T)^{-1}) = D(T)$ and for every $x \in X$ we have

$$(\lambda - T)(\lambda - T)^{-1}x = x.$$

We denote by $\sigma(T) := \mathbb{C} \setminus \rho(T)$ the spectrum set of T. Note that the set $\rho(T)$ is open and the resolvent function $\lambda \longrightarrow (\lambda - T)^{-1}$ is analytic in $\rho(T)$.

Likewise, for every $x \in X$ the local spectral theory is defined as follows. We say that $\lambda \in \rho(x, T)$, the *local resolvent set* of T in x, if there exists an analytic function $w: U \longrightarrow X$ defined on a neighborhood U of λ , which satisfies the equation

$$(\mu - T)w(\mu) = x,$$

for every $\mu \in U$. We denote by $\sigma(x,T) := \mathbb{C} \setminus \rho(x,T)$ the *local spectrum set* of T in x. Since w is not necessarily unique, a property is introduced to avoid this problem.

A closed linear operator $T: D(T) \subset X \longrightarrow X$ satisfies the SVEP if for every analytic function $h: \triangle(h) \longrightarrow X$ defined on an open set $\triangle(h) \subset \mathbb{C}$, the condition $(\lambda - T)h(\lambda) \equiv 0$ implies $h \equiv 0$. If T satisfies the SVEP, then for every $x \in X$ there exists a unique maximal analytic function $\hat{x}_T: \rho(x,T) \longrightarrow X$ such that

$$(\lambda I - T)\widehat{x}_T(\lambda) = x,$$

for every $\lambda \in \rho(x, T)$. The function \hat{x}_T is called the *local resolvent function* of T at x. See [2], [3] and [6] for further details.

In the following proposition we recall from [2] some basic properties for operators satisfying the SVEP.

Proposition 1. Let $T \in L(X)$ satisfy the SVEP and let $x \in X$. Then the following assertions hold:

(i) If $\lambda \in \rho(x,T)$, then $\sigma(\hat{x}_T(\lambda),T) = \sigma(x,T)$.

(ii) If $S \in L(X)$ commutes with T and y = Sx, then $S\hat{x}_T(\lambda) = \hat{y}_T(\lambda)$ for $\lambda \in \rho(x,T)$. In particular, $\sigma(Sx,T) \subset \sigma(x,T)$.

For $T \in L(X)$, the holomorphic functional calculus is defined as follows [9]. Let f be an analytic function defined on an open set $\Delta(f)$ containing $\sigma(T)$. The operator $f(T) \in L(X)$ is defined by the "Cauchy formula"

$$f(T) := \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) R(\lambda, T) d\lambda,$$

where Γ is the boundary of a Cauchy domain D such that $\sigma(T) \subset D \subset \Delta(f)$.

This definition may be extended to meromorphic functions. Let f be a meromorphic function in an open set $\Delta(f)$ containing $\sigma(T)$, such that the poles of f are not in the point spectrum $\sigma_p(T)$, and let $\alpha_1, \ldots, \alpha_k$ be the poles of f in $\sigma(T)$, with multiplicity n_1, \ldots, n_k , respectively. We consider the polynomial p given by

$$p(\lambda) = \prod_{i=1}^{k} (\alpha_i - \lambda)^{n_i}.$$

Note that $g(\lambda) := f(\lambda)p(\lambda)$ is an analytic function. In [4], Gindler defines a meromorphic functional calculus by

$$f\{T\} := g(T)p(T)^{-1}.$$

In this way he obtains an operator $f\{T\} \in C(X)$. Clearly, the meromorphic calculus is an extension of the holomorphic calculus.

3. The local functional calculus

Let f be an analytic function defined on an open set $\triangle(f)$. For H a Hilbert space and $T \in L(H)$ an operator with empty point spectrum, McGuire [7] introduces a *local functional calculus* in which he defines f[T]x, for $x \in H$ with $\sigma(x,T) \subset \triangle(f)$, by

(5)
$$f[T]x = \frac{1}{2\pi i} \int_{\Gamma} f(\lambda) \widehat{x}_T(\lambda) d\lambda$$

where Γ is the boundary of a Cauchy domain D such that $\sigma(x,T) \subset D \subset \Delta(f)$.

Using this idea, for any $T \in L(X)$ satisfying the SVEP we define an operator

$$f[T]: D(f[T]) \subset X \longrightarrow X$$

with domain

$$D(f[T]) := \{ x \in X : \sigma(x, T) \subset \Delta(f) \}$$

and f[T]x given by (5) for $x \in D(f[T])$.

Proposition 2. Let $T \in L(X)$ satisfy the SVEP and let f be an analytic function in $\Delta(f)$. Then D(f[T]) is a linear subspace of X and f[T] is a linear operator.

Proof. It follows from $\sigma(x+y,T) \subset \sigma(x,T) \cup \sigma(y,T)$ [2, Proposition 1.5] and the definition.

Next, we prove some results concerning the local functional calculus.

Proposition 3. Let $T \in L(X)$ satisfy the SVEP and let f be an analytic function in $\Delta(f)$. Then the following assertions hold:

- (i) If $S \in L(X)$ commutes with T, then S commutes with f[T]; i.e., $SD(f[T]) \subset D(f[T])$ and Sf[T]x = f[T]Sx for all $x \in D(f[T])$.
- (ii) If $x \in D(f[T])$ and y := f[T]x, then $f[T]\hat{x}_T = \hat{y}_T$ in $\rho(x, T)$, hence $\sigma(f[T]x, T) \subset \sigma(x, T)$.

Proof. (i) Let $x \in D(f[T])$. By Proposition 1 we have $\sigma(Sx,T) \subset \sigma(x,T)$, and so $Sx \in D(f[T])$. Moreover, $S\hat{x}_T$ is a restriction of the local resolvent of Sx. Then we have

$$Sf[T]x = S\left(\frac{1}{2\pi i}\int_{\Gamma} f(\lambda)\widehat{x}_{T}(\lambda)d\lambda\right)$$
$$= \frac{1}{2\pi i}\int_{\Gamma} f(\lambda)S\widehat{x}_{T}(\lambda)d\lambda$$
$$= f[T]Sx.$$

(ii) We prove that $f[T]\hat{x}_T$ is analytic at every point $\lambda \in \rho(x, T)$. By Proposition 1 and using the expression for the local resolvent of $\hat{x}_T(\lambda)$ in [2, Proposition 1.5] we have

$$f[T]\widehat{x}_T(\lambda) = \frac{1}{2\pi i} \int_{\Gamma} f(\mu) \left(\frac{\widehat{x}_T(\mu) - \widehat{x}_T(\lambda)}{\lambda - \mu}\right) d\mu$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\mu)\widehat{x}_T(\mu)}{\lambda - \mu} d\mu - \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\mu)\widehat{x}_T(\lambda)}{\lambda - \mu} d\mu.$$

For every $x^* \in X^*$, the first integral satisfies

$$x^*\left(\frac{1}{2\pi i}\int_{\Gamma}\frac{f(\mu)\widehat{x}_T(\mu)}{\lambda-\mu}d\mu\right) = \frac{1}{2\pi i}\int_{\Gamma}\frac{f(\mu)}{\lambda-\mu}x^*(\widehat{x}_T(\mu))d\mu.$$

So it is analytic by [8, Theorem 10.7]. The second integral is analytic by Cauchy's Theorem. Consequently $f[T]\hat{x}_T$ is analytic in $\rho(x,T)$.

Assume $T \in L(X)$ satisfies the SVEP. Let $x \in X$, and let f, g be analytic functions such that $x \in D(f[T]) \cap D(g[T])$. Clearly we have $(\alpha f + \beta g)[T]x = \alpha f[T]x + \beta g[T]x$, for all $\alpha, \beta \in \mathbb{C}$.

Proposition 4. Assume $T \in L(X)$ satisfies the SVEP. Let $x \in X$ and let f, g be analytic functions in a neighborhood of $\sigma(x, T)$. Then

(6)
$$(fg)[T]x = f[T]g[T]x = g[T]f[T]x$$

Proof. The proof is similar to that of the corresponding result for the holomorphic functional calculus [9].

First, taking into account part (ii) of Proposition 3, we obtain $\sigma(f[T]x,T) \subset \sigma(x,T) \subset \Delta(g)$, hence $f[T]x \in D(g[T])$, and analogously $g[T]x \in D(f[T])$. Moreover $\widehat{g[T]x_T} = g[T]\widehat{x_T}$.

Now if D_1, D_2 are bounded Cauchy domains such that $\sigma(x,T) \subset D_1, \overline{D_1} \subset D_2$ and $\overline{D_2} \subset \Delta(f) \cap \Delta(g)$, then we express f[T](g[T]x) as an integral with respect to λ over Γ_1 . Moreover we can write

$$f[T]g[T]x = \frac{1}{2\pi i} \int_{\Gamma_1} f(\lambda) (\widehat{g[T]x})_T(\lambda) d\lambda = \frac{1}{2\pi i} \int_{\Gamma_1} f(\lambda)g[T]\widehat{x}_T(\lambda) d\lambda.$$

Now expressing $g[T]\hat{x}_T(\lambda)$ as an integral over Γ_2 and using the expression for the local resolvent of $\hat{x}_T(\lambda)$ in [2, Proposition 1.5], we obtain

$$f[T]g[T]x = \frac{1}{2\pi i} \int_{\Gamma_1} f(\lambda) \left\{ \frac{1}{2\pi i} \int_{\Gamma_2} g(\eta) \left(\frac{\widehat{x}_T(\lambda) - \widehat{x}_T(\eta)}{\eta - \lambda} \right) d\eta \right\} d\lambda$$
$$= -\frac{1}{4\pi^2} \int_{\Gamma_1} f(\lambda) \widehat{x}_T(\lambda) \int_{\Gamma_2} \frac{g(\eta)}{\eta - \lambda} d\eta d\lambda + \frac{1}{4\pi^2} \int_{\Gamma_1} f(\lambda) \int_{\Gamma_2} \frac{\widehat{x}_T(\eta)g(\eta)}{\eta - \lambda} d\eta d\lambda.$$

Since $\lambda \in D_2$ and $\eta \notin \overline{D_1}$, we have

$$\frac{1}{2\pi i} \int_{\Gamma_1} \frac{g(\eta)}{\eta - \lambda} d\eta = g(\lambda), \qquad \frac{1}{2\pi i} \int_{\Gamma_1} \frac{f(\lambda)}{\eta - \lambda} d\lambda = 0.$$

Hence we obtain the desired result

$$f[T]g[T]x = \frac{1}{2\pi i} \int_{\Gamma_1} f(\lambda)g(\lambda)\widehat{x}_T(\lambda)d\lambda = (fg)[T]x.$$

Remark 1. Sometimes the results of evaluating f[T]g[T]x and (fg)[T]x are different, as it is shown by the following example: Let T be the operator on the Hilbert space $\ell_2(\mathbb{N})$ defined by $T(x_n) = (\frac{1}{n}x_n)$. It is clear that T satisfies the SVEP, since T is a self-adjoint operator. For $x = (x_n) \in \ell_2(\mathbb{N})$ we have

$$\sigma(x,T) = \overline{\left\{\frac{1}{n} : x_n \neq 0\right\}}.$$

We take $x =: (1, 1, 0, ...), f(\lambda) := \frac{1}{1-\lambda}$ and $g(\lambda) := 1 - \lambda$. It is easy to show that $\sigma(x, T) = \{1, \frac{1}{2}\}$ and $\sigma((I - T)x, T) = \{\frac{1}{2}\}$, hence $x \notin D(f[T])$ and $(I - T)x \in D(f[T])$. Using the local functional calculus f[T](I - T)x = (0, 1, 0, ...) and (fg)[T]x = x.

Note that $x \notin D(f[T])$. So we cannot define g[T]f[T]x.

McGuire proved in [7] the equality (6) in the case X is a complex separable Hilbert space and T has empty point spectrum.

4. Stability under the action of polynomials

Our first result provides a characterization for the equality $\sigma(p(T)x, T) = \sigma(x, T)$ when p is a polynomial.

Theorem 1. Assume $T \in L(X)$ satisfies the SVEP. Let $x \in X$ and let

$$p(\lambda) = (\alpha_1 - \lambda)^{n_1} \dots (\alpha_p - \lambda)^{n_p}$$

be a polynomial with $\alpha_i \neq \alpha_j$ for $i \neq j$. We have

$$\sigma(p(T)x,T) = \sigma(x,T)$$

if and only if there is no $i \in \{1, ..., p\}$ so that α_i is a pole of \hat{x}_T of order $\leq n_i$. Consequently, $\sigma(p(T)x, T) = \sigma(x, T)$ if no α_i is an isolated point of $\sigma(x, T)$.

Proof. Assume first $p(\lambda) = (\alpha - \lambda)^n$. We shall prove that

(7)
$$\sigma((\alpha - T)^n x, T) \neq \sigma(x, T)$$

if and only if α is a pole of \hat{x}_T of order $\leq n$.

Taking into account

$$\sigma((\alpha - T)x, T) \subset \sigma(x, T) \subset \sigma((\alpha - T)x, T) \cup \{\alpha\},\$$

(7) is equivalent to $\alpha \in \sigma(x,T) \cap \rho((\alpha - T)^n x,T)$. We have that $(\alpha - T)^n \hat{x}_T$ is the local resolvent of T at $(\alpha - T)^n x$ in a punctured neighborhood of α . Hence $\alpha \in \rho((\alpha - T)^n x,T)$ if and only if the function $(\alpha - T)^n \hat{x}_T$ is continuous at α .

Considering the binomial expansion

$$(\alpha - T)^n = (\alpha - \mu + \mu - T)^n = \sum_{r=0}^n \binom{n}{r} (\alpha - \mu)^r (\mu - T)^{n-r},$$

and denoting

422

$$A(\mu, \alpha) := \sum_{r=1}^{n-1} \binom{n}{r} (\alpha - \mu)^r (\mu - T)^{n-r},$$

we obtain

$$\lim_{\mu \to \alpha} (\alpha - T)^n \widehat{x}_T(\mu) = \lim_{\mu \to \alpha} \left[(\alpha - \mu)^n \widehat{x}_T(\mu) + A(\mu, \alpha) \widehat{x}_T(\mu) + (\mu - T)^n \widehat{x}_T(\mu) \right]$$
$$= \lim_{\mu \to \alpha} (\alpha - \mu)^n \widehat{x}_T(\mu) + (\alpha - T)^{n-1} x.$$

Taking into account this equality, it is clear that the function $(\alpha - T)^n \hat{x}_T$ is continuous at α if and only if \hat{x}_T have a pole at α of order $\leq n$.

In the general case, an iterated application of the previous process yields $\sigma(p(T)x,T) = \sigma(x,T)$.

Corollary 1. Assume $T \in L(X)$ satisfies the SVEP. Let $p(\lambda)$ be a polynomial having no zeroes in $\sigma_p(T)$. Then

$$\label{eq:starseq} \begin{split} \sigma(p(T)x,T) &= \sigma(x,T), \mbox{ for all } x \in X. \\ Consequently, \mbox{ if } y \in D(p(T)^{-1}) = R(P(T)), \mbox{ then} \\ \sigma(p(T)^{-1}y,T) &= \sigma(y,T). \end{split}$$

Proof. Assume that there exists $x \in X$ such that $\sigma(p(T)x,T) \neq \sigma(x,T)$. By Theorem 1, there is a zero α of the polynomial p with order n which is a pole of \hat{x}_T of order $k \leq n$, that is $y := \lim_{\mu \to \alpha} (\mu - \alpha)^k \hat{x}_T(\mu) \neq 0$, but $\lim_{\mu \to \alpha} (\mu - \alpha)^{k+1} \hat{x}_T(\mu) = 0$. Then

$$(\alpha - T)y = (\alpha - T)\lim_{\mu \to \alpha} (\mu - \alpha)^k \widehat{x}_T(\mu)$$
$$= \lim_{\mu \to \alpha} (\alpha - \mu)(\mu - \alpha)^k \widehat{x}_T(\mu) + \lim_{\mu \to \alpha} (\mu - T)(\alpha - \mu)^k \widehat{x}_T(\mu)$$
$$= -\lim_{\mu \to \alpha} (\mu - \alpha)^{k+1} x = 0.$$

Hence $\alpha \in \sigma_p(T)$. Consequently, $\sigma(p(T)x, T) = \sigma(x, T)$ if p has no zeroes in $\sigma_p(T)$. Hence, it is enough to apply the equality $\sigma(p(T)x, T) = \sigma(x, T)$ to $x \in X$ such that y = p(T)x.

Corollary 2. Let $T \in L(X)$ satisfy the SVEP and let $x \in X$. If $p(\lambda)$ is a polynomial having no zeroes in $\sigma_p(T) \cap \sigma(x,T)$, then

$$\sigma(p(T)x,T) = \sigma(x,T).$$

Proof. If $\sigma(x,T) \neq \sigma(p(T)x,T)$, then there is a zero α of p which is a pole of \hat{x}_T of order n. Moreover by Corollary 1, $\alpha \in \sigma_p(T)$ hence $\alpha \in \sigma(x,T) \cap \sigma_p(T)$.

In general, the converse of the above corollary is not true, as the following example shows.

Example 1. Let B([0,1]) denote the Banach space of all bounded functions from [0,1] into \mathbb{C} , with the supremum norm. For $u \in B([0,1])$ we define (Tu)(s) = su(s) for all $s \in [0,1]$. If x(t) is given by

$$x(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{2}, \\ 1, & \frac{1}{2} < t \le 1, \end{cases}$$

then $\sigma(x,T) = \begin{bmatrix} \frac{1}{2},1 \end{bmatrix}$ and $1 \in \sigma(x,T) \cap \sigma_p(T)$. However for $p(\lambda) := 1 - \lambda$, we have

$$(I-T)x(t) = \begin{cases} 0, & 0 \le t \le \frac{1}{2}, \\ (1-t), & \frac{1}{2} < t \le 1, \end{cases}$$

hence $\sigma((I - T)x, T) = [\frac{1}{2}, 1] = \sigma(x, T).$

Remark 2. The results of this section have been obtained for $T \in L(X)$ satisfying the SVEP. If T does not satisfy the SVEP, then Corollary 2 and the necessary condition for the equality $\sigma(p(T)x, T) = \sigma(x, T)$ of Theorem 1 are also true.

5. Stability under the action of analytic and meromorphic functions

The following proposition provides a sufficient condition for the equality

$$\sigma(f[T]x,T) = \sigma(x,T),$$

where f is a function of the local functional calculus.

Proposition 5. Assume $T \in L(X)$ satisfies the SVEP. Let $x \in X$ and let f be an analytic function in a neighborhood of $\sigma(x,T)$. If f has no zeroes in $\sigma(x,T)$, then

 $\sigma(f[T]x,T) = \sigma(x,T).$

Proof. By part (ii) of Proposition 3, it is enough to show that $\rho(f[T]x, T) \subset \rho(x, T)$. We denote $h(\lambda) := f(\lambda)^{-1}$ and y := f[T]x. By part (ii) of Proposition 3 we have that $h[T]\hat{y}_T(\lambda)$ is an analytic function on $\rho(y, T)$. Moreover, since $\hat{x}_T(\mu) \in D(g[T]) \cap D(f[T])$, using Proposition 4 we obtain

$$(\mu - T)h[T]\widehat{y}_T(\mu) = (\mu - T)h[T]f[T]\widehat{x}_T(\mu) = x$$

for all $\mu \in \rho(y, T)$; hence $\rho(y, T) \subset \rho(x, T)$.

Theorem 2 (Stability of the local spectrum). Assume that $T \in L(X)$ satisfies the SVEP. Let $x \in X$ and let f be a function analytic in a neighborhood of $\sigma(x,T)$. Let $\alpha_1, \ldots, \alpha_p$ be the zeroes of f in $\sigma(x,T)$ with multiplicities n_1, \ldots, n_p , respectively. Then

$$\sigma(f[T]x,T) = \sigma(x,T)$$

if and only if there is no $i \in \{1, \ldots, p\}$ so that α_i is a pole of \hat{x}_T of order $\leq n_i$.

Proof. We write $f(\lambda) = p(\lambda)g(\lambda)$, where $g \neq 0$ in $\sigma(x,T)$ and

$$p(\lambda) = \prod_{i=1}^{n} (\alpha_i - \lambda)^{n_i}.$$

By part (ii) of Proposition 1, we obtain that $\sigma(p(T)x,T) \subset \sigma(x,T)$; hence g has no zeroes in $\sigma(p(T)x,T)$. Applying Proposition 5 to the function g we obtain

$$\sigma(f[T]x,T) = \sigma(g[T]p(T)x,T) = \sigma(p(T)x,T),$$

and using Theorem 1 we conclude the proof.

The result [7, Theorem 1.5] of McGuire may be readily derived from the following corollary.

Corollary 3. Assume $T \in L(X)$ satisfies the SVEP. Let $x \in X$, and let f be an analytic function in $\sigma(x,T)$. If f has no zeroes in $\sigma_p(T) \cap \sigma(x,T)$, then $\sigma(x,T) = \sigma(f[T]x,T)$.

Proof. It is clear by Proposition 5 and Corollary 2.

The following corollary provides characterizations of when an analytic function f satisfies the equality

$$\sigma(f[T]x,T) = \sigma(x,T), \text{ for all } x \in D(f[T]).$$

Corollary 4. Assume $T \in L(X)$ satisfies the SVEP. If f is an analytic function which is not identically zero on any component of $\Delta(f)$ intersecting $\sigma(T)$, then the following assertions are equivalent:

(i) f has no zeroes in $\sigma_p(T) \cap \sigma(x,T)$, for all $x \in D(f[T])$.

(ii) $\sigma(f[T]x,T) = \sigma(x,T)$, for all $x \in D(f[T])$.

(iii) f[T] is injective.

Proof. (i) \Rightarrow (ii) It is clear by Corollary 3.

(ii) \Rightarrow (iii) It is enough to note that $\sigma(x,T) = \emptyset$ if and only if x = 0.

(iii) \Rightarrow (i) Suppose that f has a zero α belonging to $\sigma_p(T) \cap \sigma(x,T)$, with multiplicity k. We may write $f(\lambda) = g(\lambda)(\alpha - \lambda)^k$.

Then there exists a non-zero vector $y \in X$ such that $(\alpha - T)y = 0$ and $\sigma(y, T) = \{\alpha\}$. Hence $y \in D(f[T])$ and $f[T]y = g[T](\alpha - T)^k y = 0$.

In the following corollary we give a necessary and sufficient condition for the stability of the local spectrum by the meromorphic calculus.

Notice that the result holds for all $x \in D(f\{T\})$, which in general includes properly D(f[T]).

Corollary 5. Assume $T \in L(X)$ satisfies the SVEP. Let f be a meromorphic function in an open set containing $\sigma(T)$, such that the poles of f are outside the point spectrum of T and f is identically zero in no component of $\Delta(f)$.

Then $\sigma(f{T}x,T) = \sigma(x,T)$ for all $x \in D(f{T})$ if and only if f has no zeroes in $\sigma_p(T)$.

Proof. First we assume f has no zeroes in $\sigma_p(T)$. As in the definition of the meromorphic calculus, we write $f\{T\} = g(T)p(T)^{-1}$, where g is an analytic function in $\sigma(T)$ and p is a polynomial such that the zeros of p are not in $\sigma_p(T)$. By Proposition 5 we have

$$\sigma(g(T)p(T)^{-1}x,T) = \sigma(p(T)^{-1}x,T),$$

and by Corollary 1

$$\sigma(p(T)^{-1}x,T) = \sigma(x,T),$$

hence $\sigma(f{T}x, T) = \sigma(x, T)$.

For the converse, note that if f has a zero α in $\sigma_p(T)$, then there exists a non-zero vector $x \in X$ such that $(\alpha - T)x = 0$, hence $f\{T\}x = 0$.

Finally our aim is to provide a property similar to (4) for the operator f[T].

Proposition 6. Assume $T \in L(X)$ satisfies the SVEP, and let f be an analytic function in $\sigma(x,T)$. Then

$$\sigma(x,T) \subset \sigma(f[T]x,T) \cup Z_x(f,T),$$

where $Z_x(f,T)$ denotes the set of all zeros of f in $\sigma(x,T)$.

Proof. We can write $f(\mu) = p(\mu)g(\mu)$, with p representing the zeroes of f in $\sigma(x, T)$ and g having no zeroes in $\sigma(x, T)$.

Note that f[T]x = p(T)g[T]x. By Proposition 5 we have $\sigma(x,T) = \sigma(g[T]x,T)$, and it is clear that $\sigma(x,T) \subset \sigma(g[T]x,T) \cup Z_x(p,T) = \sigma(p(T)g[T]x,T) \cup Z_x(p,T)$. So the result is proved.

References

- R. G. Bartle, Spectral decomposition of operators in Banach spaces, Proc. London Math. Soc., (3) 20 (1970) 438-450. MR 41:7464
- 2. I. Erdelyi, R. Lange, Spectral decompositions of Banach spaces, Springer, 1977. MR 58:2432
- I. Erdelyi, Wang Shengwang, A local spectral theory for closed operators, Cambridge Univ. Press, 1985. MR 87g:47059
- 4. H. Gindler, An operational calculus for meromorphic functions, Nagoya Math. J., 26 (1966), 31-38. MR **33:**6394
- M. González, V. M. Onieva, On the meromorphic and Schechter-Shapiro operational calculi, J. Math. Anal. Appl. 116 (1986) 363-377. MR 87j:47025
- R. Lange, S. Wang, New approaches in spectral decomposition, American Mathematical Society, 1992. MR 93i:47039
- P. McGuire, A local functional calculus, Integral Equations and Operator Theory, 9 (1986) 218-236. MR 88c:47025
- 8. W. Rudin, Real and Complex Analysis (Third edition). McGraw-Hill, 1987. MR 88k:00002
- A. E. Taylor, D.C. Lay, Introduction to functional analysis (2nd edition), Wiley, 1980. MR 81b:46001

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, LA LAGUNA, SPAIN *E-mail address*: tbermudez@ull.es

DEPARTAMENTO DE MATEMÁTICAS, UNIVERSIDAD DE CANTABRIA, SANTANDER, SPAIN

DEPARTAMENTO DE ANÁLISIS MATEMÁTICO, UNIVERSIDAD DE LA LAGUNA, LA LAGUNA, SPAIN