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Abstract. We prove if M is a complete Riemannian manifold with an em-
bedded totally geodesic compact hypersurface N such that M has nonnega-
tive sectional curvature, and the sectional curvature of M is strictly positive
in a neighborhood of N , then the pair (M,N) is diffeomorphic to the pair
(Sn, Sn−1)/π1(M). This result gives an affirmative answer to a question of
H. Wu in the case when M is compact and simply connected.

1. Introduction

In [6], H. Wu obtained the following interesting sphere theorem.

Theorem A. Let M be an n-dimensional simply connected compact Riemannian
manifold with nonnegative sectional curvature. Let N be an orientable totally geo-
desic compact hypersurface of M such that the sectional curvature of M is strictly
positive in a neighborhood of N . Then the pair (M,N) is homeomorphic to the
standard pair (Sn, Sn−1), where Sn−1 is regarded as the equatorial hypersurface in
Sn.

His method of proof is the judicious use of Morse theory combined with the
smoothing theory of convex functions developed by R. E. Greene and himself [4].
It is interesting to compare this kind of sphere theorem with the well-known sphere
theorems which have the usual pinching condition of sectional curvature or some
diameter information [1]. In his paper [6], Wu raised the question of whether (M,N)
might be in fact diffeomorphic to (Sn, Sn−1). We found an affirmative answer to
his question, and it is indeed the main objective of our paper to present the proof
of this differentiable version of Wu’s theorem.

We also obtained the non-simply-connected version by reducing the situation to
the simply connected case with the use of the second variation argument of Frankel
[2].

2. Notations and preliminaries

We now present some relevant background materials. Let M be a Riemannian
manifold and f : M → R be a continuous function. Let γ : (−a, a) → M be a
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geodesic such that γ(0) = x ∈ M and γ̇(0) = X ∈ TxM . Define the following
extended real numbers:

Cf(x;X) = lim
r→0

inf
1

r2
{f(γ(r)) + f(γ(−r))− 2f(γ(0))},(1)

Cf(x) = inf Cf(x;X),(2)

where the infimum in (2) is taken over all unit vectors X ∈ TxM .
Recall that f is said to be strictly convex on an open set U if there exists a

strictly positive continuous function κ on U such that Cf ≥ κ on U . If f is C2,
then it is easy to see that Cf(x;X) = D2f(X,X), where D2f is the Hessian of f .
The following smoothing theorem due to Greene and Wu [4] is our important tool.

Theorem B. Suppose f is a strictly convex function on an open set U in the above
sense. Let ξ be a strictly positive continuous function on U . Then there exists a
strictly convex C∞ function F on U such that |F − f | < ξ.

Now let M be as in Theorem A. Then N disconnects M into two components
M1 and M2. Let us take the following convention: First, let s(x) denote the signed
distance from x to N . The sign convention is chosen in such way that the points
in M1 (resp. M2) are of positive (resp. negative) distance from N . Thus

s(x) =

{
d(x,N) if x ∈M1,
−d(x,N) if x ∈M2.

Using this signed distance, we define U [a, b] = {x ∈ M |a ≤ s(x) ≤ b} for a, b ∈ R.
We also define U [a,∞) = {x ∈ M |a ≤ s(x)}. One can similarly define various sets
like U(a, b), U(a,∞), U(a, b], U [a, b), etc., by adopting the notation convention for
(half-) open or (half-) closed intervals. For a ∈ R, we also define Na = {x ∈
M |s(x) = a}. Thus in this convention, N = N0. For δ > 0, we also define ρδ+ :

U [−δ,∞)→ R by ρδ+(x) = d(x,N−δ), and we similarly define ρδ− : U(−∞, δ]→ R
by ρδ−(x) = d(x,Nδ).

3. Main results

Now we state our main result.

Theorem 1. Let M be an n-dimensional simply connected compact Riemannian
manifold with nonnegative sectional curvature. Suppose there exists an orientable
totally geodesic compact hypersurface N such that the sectional curvature of M is
strictly positive in a neighborhood of N . Then the pair (M,N) is diffeomorphic to
the standard pair (Sn, Sn−1), where Sn−1 is regarded as the equatorial hypersphere
in Sn.

Proof. Let us choose sufficiently small δ > 0 which satisfies the following:
(1) The sectional curvature of M is strictly positive on U [−2δ, 2δ].
(2) N is diffeomorphic to all Nα for all α ∈ [−2δ, 2δ].
(3) ρδ+ is C∞ and ∇ρδ+ 6= 0 on U(−δ, 2δ).
(4) ρδ− is C∞ and ∇ρδ− 6= 0 on U(−2δ, δ).

(5) ρδ+ + ρδ− = 2δ on U [−δ, δ].
Let k be a positive lower bound of the sectional curvature of M on U [−2δ, 2δ].

Then there exists ε such that 0 < ε < δ and |S(X,X)| ≤ δk
2 |X |2 for all X ∈ TN±ε,

where S is the second fundamental form of N±ε. From now on, δ and ε are fixed.
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Claim. − log ρε+ (resp. − log ρε−) is strictly convex on U(δ,∞) (resp. U(−∞,−δ)).
This claim follows from Wu’s argument in [6, pp 533-534]. Repeating his argu-

ment and noticing the condition on S, we get

C(− log ρε+(x;X)) ≥ kδ

2b
α2 +

1

b2
β2,

where α2 + β2 = 1, X is a unit vector in TxM and b = d(x,N−ε). We can then
conclude that

C(− log ρε+) ≥ min{ 1

b2
,
kδ

2b
} > 0.

Thus the claim is proved.
Now define a function µ : U(δ,∞)→ R by µ(x) = d(x,Nδ). By the above claim

and Theorem B, there exists a strictly convex C∞ function f1 on U(δ,∞) such that

|f1 − (− log ρε+)| < exp−
1
µ on U(δ,∞).

Now define a function ψ1 on U [− ε
2 ,∞) by

ψ1(x) =

{
f1(x) if x ∈ U(δ,∞),

− log ρε+(x) if x ∈ U [− ε
2 , δ].

It is very important to note that ψ1 is in fact C∞ on U [− ε
2 ,∞). (The proof is

straightforward by using the Newton divided difference formula.) We now use the
standard Morse theory argument (see [6, pp 535-536], for example). Let sε =
s|U[− ε2 ,

ε
2 ] where s is the the signed distance function defined in §2. Since δ > ε are

chosen sufficiently small, U [−ε, ε] is diffeomorphic to N × [−ε, ε]. For p ∈ U [−ε, ε],
let p̄ ∈ N be the foot of p on N . It is easy to see that N is diffeomorphic to Sn−1

by [6], and we fix a diffeomorphism φ : N → Sn−1. Let π(p) = φ(p̄). Then the map
p 7−→ (π(p), sε(p)) gives a diffeomorphism U [−ε, ε]→ Sn−1 × [−ε, ε]. Now look at

the vector field Y1 = −k1
∇ψ1

|∇ψ1|2 on U [− ε
2 ,∞), where k1 is a constant to be chosen

later. For p ∈ U [− ε
2 ,∞), the flow line φt(p) through p meets with N at a unique

point p̄, and it is clear that p̄ is the foot of p on N . And the flow preserves the level
sets Nα, for − ε

2 ≤ α ≤ ε
2 . Thus this fact, combined with Wu’s argument, gives a

diffeomorphism Ψ1 of U [− ε
2 ,∞) to a closed ball Bη1 ⊂ Rn. We adjust the constant

k1 so that N is mapped to the unit sphere Sn−1 ⊂ Bη1 and η1 > 1.
As this flow preserves the level set Nα, we can find constants 0 < l1 < 1 < η1 and

a strictly decreasing C∞ function u1 : [− ε
2 ,

ε
2 ]→ [l1, η1] with u1(− ε

2 ) = η1, u1(0) =
1, u1( ε2 ) = l1 so that, for − ε

2 ≤ α ≤ ε
2 , Nα is diffeomorphically mapped to the

concentric sphere Sn−1(u1(α)) of radius u1(α). Note also that the flow lines in
U [− ε

2 ,∞) correspond to the radial lines in Bη1 . Now, applying the same argument,
we can find a C∞ function ψ2 : U(−∞, ε2 ]→ R given by

ψ2(x) =

{
f2(x) if x ∈ U(−∞,−δ),

− log ρε−(x) if x ∈ U [−δ, ε2 ],

where f2 is a strictly convex C∞ function on U(−∞,−δ). Let Y2 = −k2
∇ψ2

|∇ψ2|2 on

U(−∞, ε2 ], where k2 is again a constant to be chosen later. Note that, even though
the speeds are different, the flow lines of Y1 and Y2 coincide in U [− ε

2 ,
ε
2 ]. Thus for

p ∈ U [− ε
2 ,

ε
2 ], both flow lines meet N at its foot p̄ ∈ N . Using the same argument as

above, we can find a diffeomorphism Ψ2 : U(−∞, ε2 ]→ B̃η2 , another closed ball of
radius η2 > 1, such that the angular coordinates of Ψ1 and Ψ2 coincide on U [− ε

2 ,
ε
2 ].

The radial part of Ψ2 gives a strictly increasing C∞ function u2 : [− ε
2 ,

ε
2 ]→ [l2, η2]

such that u2(− ε
2 ) = l2, u2( ε2 ) = η2, and, adjusting the constant k2, we can set
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u2(0) = 1, where 0 < l2 < 1 < η2. Now there exists a strictly decreasing C∞

function h : [l2, η2] → [l1, η1] with h(l2) = η1, h(1) = 1 and h(η2) = l1 such that
h ◦ u2(α) = u1(α) for all α ∈ [− ε

2 ,
ε
2 ].

Glue Bη1 and B̃η2 by identifying the point (r2, θ2) ∈ B̃η2 with (r1, θ1) ∈ Bη1 ,
where θ1 = θ2 and r1 = h(r2). This gluing process produces a manifold Σ which
is diffeomorphic to Sn, and our construction shows that our manifold M is diffeo-
morphic to Σ. Moreover, the diffeomorphism of Σ to Sn can be chosen to map the
image of N to the equatorial hypersphere in Sn.

The following is a generalization of Theorem 1 in the case when M is not simply
connected.

Theorem 2. Let M be a complete Riemannian manifold with an embedded totally
geodesic compact hypersurface N . Suppose M has nonnegative sectional curvature
and the sectional curvature of M is strictly positive in a neighborhood of N . Then
the pair (M,N) is diffeomorphic to the pair (Sn, Sn−1)/π1(M).

Proof. Let π : M̃ → M be the universal covering space of M . Since π−1(N) has
strictly positive sectional curvature, Bonnet’s theorem implies that each component
of π−1(N) has finite diameter, thus is compact. Then applying the second variation
argument of Frankel [2], we see that π−1(N) cannot have more than one component.

Thus π−1(N) is a compact connected finite covering manifold of N . Thus π : M̃ →
M is a finite covering map, which implies that M̃ is compact. Then we can use
Theorem 1 to complete the proof.

The following corollary is an easy consequence of our Theorem 1 and Theorem 2.

Corollary 1. Assume the conditions in Theorem 2 are valid.
(i) If dim(M) ≥ 3, then i∗ : π1(N)→ π1(M) is an isomorphism, where i : N →

M is the embedding.
(ii) If dim(M) = 2, then i∗ is onto.
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