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ON THE CURVES OF CONTACT ON SURFACES
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(Communicated by Wolmer V. Vasconcelos)

Abstract. Suppose a smooth curve C is a set-theoretic complete intersection
of two surfaces F and G with the multiplicity of F along C less than or
equal to the multiplicity of G along C. One obtains a relation between the
degrees of C, F and G, the genus of C, and the multiplicity of F along C
in case F has only ordinary singularities. One obtains (in the characteristic
zero case) that a nonsingular rational curve of degree 4 in P3 is not set-
theoretically an intersection of 2 surfaces, provided one of them has at most
ordinary singularities. The same result holds for a general nonsingular rational
curve of degree ≥ 5.

Introduction

In [2] we characterized the smooth curves C which are a set-theoretic complete
intersection on a given irreducible surface F in P3 in case C 6⊂ SingF . In [3]
the characterization was made more explicit if C ∩ SingF consists only of rational
double points. Moreover we also characterized the curves of contact on F which are
not contained in SingF provided F has only ordinary singularities (i.e. those which
admit a general projection of a nonsingular surface in P3 in the characteristic zero
case).

The aim of this paper is to study the smooth curves of contact on F in case
C ⊂ SingF . A useful tool for this study is the symmetric multiple structures. It
turns out that the obvious multiple structure defined on C, in case C is a curve of
contact on F , is symmetric if SingF contains at least one pinch point.

Suppose a smooth curve C is a set-theoretic complete intersection of two surfaces
F and G with the multiplicity of F along C less than or equal to the multiplicity
of G along C. One obtains a relation between the degrees of C, F and G, the
genus of C, and the multiplicity of F along C in case the normal cone to C in
the scheme defined by F and G is locally (along C) a complete intersection in the
normal bundle to C in P3. This (rather technical) condition is satisfied if F has
only ordinary singularities.

Putting together the results of this paper and those of [3] we obtain (in the
characteristic zero case) that a nonsingular rational curve of degree 4 in P3 is not
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set-theoretically an intersection of 2 surfaces, provided one of them has at most
ordinary singularities. The same result holds for a general nonsingular rational
curve of degree ≥ 5.

Of course the main inspiration for this paper is the problem whether any (con-
nected) curve in P3 is a set-theoretic complete intersection. The problem is open
even in the case of smooth rational curves. It is known ([6]) that a noncomplete
intersection curve cannot be a set-theoretic complete intersection on a nonsingular
surface. That is the reason why the singular surfaces come into play in this paper.

1. Symmetric multiple structures

In the sequel C will always denote a smooth (connected) curve ⊂ P3
k (k-algebra-

ically closed) and I ⊂ OP3 its ideal sheaf.

Definition. A multiple structure on C is a locally Cohen-Macaulay (lCM) sub-
scheme C of P3 with an ideal sheaf J (OP3/J is locally Cohen-Macaulay) such
that It+1 ⊂ J ⊂ I for some t ≥ 0.

For any i ≥ 1 we define Ji as the minimal ideal sheaf containing J + Ii which
defines a lCM subscheme of P3. So Ji is obtained by removing all the embedded
components of J + Ii. We have J1 = I and Ji = J for i ≥ t + 1 where t + 1 will
denote in the sequel the least i such that J ⊃ Ii.

Proposition 1.1 ([1]). Let J ⊂ OP3 be an ideal sheaf defining a multiple structure
on C ⊂ P3 and let Ji be the ideal sheaves defined as before for i ≥ 1. We put
moreover J0 = OP3 . Then

1◦. Ji ⊃ Ji+1 for i ≥ 0.
2◦. Ji/Ji+1 is a locally free OC-module.
3◦. JiJj ⊂ Ji+j and the induced map Ji/Ji+1⊗ Jj/Jj+1 → Ji+j/Ji+j+1 is gener-

ically surjective.

In the sequel we shall put Ei = Ji/Ji+1. In particular E0 = OP3/I = OC .

Proposition 1.2. Let C be a multiple structure on C. Then

degC =

(
t∑
i=0

rankEi

)
degC.

Proof. Let us consider the exact sequence

0→ Ei(n)→ OP3/Ji+1(n)→ OP3/Ji(n)→ 0.

By Riemann-Roch and additivity of the Euler-Poincaré characteristic

degEi + (rankEi) degCn+ rankEi(1− p(C)) + (degCi)n+ 1− p(Ci)
= (degCi+1)n+ 1− p(Ci+1)

where Ci is a (lCM) curve defined by Ji and p(Ci) is its (arithmetic) genus. Compar-
ing the terms which contain n we obtain that degCi+1 = degCi + (rankEi) degC.
An easy induction completes the proof since C = Ct+1.

Let GrI(OP3) denote
⊕

i≥0 I
i/Ii+1 (I0 = OP3) and for any J ⊂ I the sheaf of

graded ideals
⊕

i≥0(J ∩ Ii) + Ii+1/Ii+1 ⊂ GrI(OP3) will be denoted by J∗ (the

sheaf of initial forms of J with respect to the I-adic filtration of OP3).
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Let J define a multiple structure on C ⊂ P3. Then Ii ⊂ Ji for every i, so there
is a map Ii/Ii+1 → Ji/Ji+1 = Ei with (J ∩ Ii) + Ii+1/Ii+1 contained in its kernel.
So we have an induced map ϕ : GrI(OP3)/J∗ →

⊕
0≤i≤tEi.

Proposition 1.3. Let x ∈ C. Then the following conditions are equivalent:

1◦. ϕx : (GrI(OP3)/J∗)x → (
⊕

0≤i≤t Ei)x is an isomorphism.

2◦. (GrI(OP3)/J∗)x is a (finitely generated) free OC,x-module.
3◦. (Ji)x = (J + Ii)x for 0 ≤ i ≤ t.
4◦. (GrI(OP3)/J∗)x is a Cohen-Macaulay (CM ) local ring.

Proof. The implication 1◦ → 2◦ is obvious. If 2◦ holds, then (J + Ii/J + Ii+1)x ≈
(Ii/(J ∩ Ii) + Ii+1)x is a free OC,x-module for 0 ≤ i ≤ t. We want to prove that
OP3,x/(J + Ii)x is CM for 1 ≤ i ≤ t. We induce on i. If i = 1 this is true since
J ⊂ I. It is enough to show that mx—the maximal ideal of OP3,x—is not associated
to (J + Ii+1)x since dimOP3,x/(J + Ii+1)x = 1. Suppose mxa ∈ (J + Ii+1)x
for some a ∈ OP3,x. Then a ∈ (J + Ii)x since (J + Ii+1)x ⊂ (J + Ii)x and
OP3,x/(J + Ii)x is CM by the inductive hypothesis. It follows that a ∈ (J + Ii+1)x
since (J+Ii/J+Ii+1)x is a free OC,x-module. This proves the implication 2◦ → 3◦.
The implication 3◦ → 1◦ also holds since

((GrI(OP3)/J∗)i)x = (Ii/(J ∩ Ii) + Ii+1)x ≈ (J + Ii/J + Ii+1)x = (Ei)x

for 0 ≤ i ≤ t. Finally the conditions 2◦ and 4◦ are equivalent since (GrI(OP3)/J∗)x
is a finite extension of OP3,x/Ix which is regular.

Remark. The conditions above hold if and only if they hold over the completion of
OC,x. Moreover there exists a nonempty open U ⊂ C such that for x ∈ U they are
satisfied.

Definition. LetC be a multiple structure on C. Then C is called a locally complete
intersection (lci) if its ideal sheaf is locally generated by 2 elements.

Definition. Let C be a multiple structure on C. Then C is called symmetric if
rankEi = rankEt−i for 0 ≤ i ≤ t.

Remark. In particular rankEt = 1.

Proposition 1.4. Let C be a symmetric multiple structure on C. Then C is a
lci if and ony if the pairings Ei ⊗ Et−i → Et (considered in Proposition 1.1) are
nonsingular for 0 ≤ i ≤ t.

The proof of Proposition 1.4 is the same as the proof of the corresponding state-
ment in case rankI/J2 = 1 in [4].

Proposition 1.5. Let C be a lci multiple structure on C. Then the following
conditions are equivalent:

1◦. C is symmetric.
2◦. J∗ ⊂ GrI(OP3) is generically a complete intersection.
3◦. There exists x ∈ C such that (J∗)x ⊂ GrIx(OP3,x) is a complete intersection

(i.e. (J∗)x is generated by 2 homogeneous elements).
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Proof. Generically Ji = J + Ii for 0 ≤ i ≤ t since Ji is obtained by removing all
the embedded components of J + Ii. Therefore over an open set U ⊂ C

GrI(OP3)/J∗ =
⊕

0≤i≤t
Ii/(J ∩ Ii) + Ii+1 ≈

⊕
0≤i≤t

(J + Ii/J + Ii+1)

=
⊕

0≤i≤t
Ji/Ji+1 =

⊕
0≤i≤t

Ei.

For every x ∈ U , the ideal (J∗)x is a (ht 2) perfect ideal of GrIx(OP3,x) since
GrIx(OP3,x)/(J∗)x is a finite free extension of OP3,x/Ix which is a discrete val-

uation ring. Suppose now that C is symmetric. It follows from the local ver-
sion of Proposition 1.4 that the canonical module of GrIx(OP3,x)/(J∗)x is free of
rank 1 if x ∈ U . By Serre’s Lemma (J∗)x is a homomorphic image of a rank 2
projective GrIx(OP3,x)-module. GrIx(OP3,x) is a polynomial ring in 2 variables
over a (geometric) discrete valuation ring OP3,x/Ix. So (J∗)x is generated by 2
elements since all the projective GrIx(OP3,x)-modules are free ([5]). It follows
from Nakayama’s Lemma that two generators of (J∗)x can be chosen homogeneous
since (J∗)x is a homogeneous ideal of GrIx(OP3,x). So the implication 1◦ → 2◦

is proved. 2◦ obviously implies 3◦. It follows from the proof of 1◦ → 2◦ that
GrI(OP3)/J∗ ≈

⊕
0≤i≤t Ei over a non-empty open subset U ⊂ C. So, for every

0 ≤ i ≤ t, rank(GrI(OP3)/J∗)i = rankEi where (GrI(OP3)/J∗)i denotes the i-th
homogeneous component of GrI(OP3)/J∗. Let x ∈ C be such an element that
(J∗)x is a complete intersection. Then

rank(GrIx(OP3,x)/(J∗)x)i = rank(GrIx(OP3,x)/(J∗)x)t−i

since the Hilbert function of a homogeneous, finite ht 2 complete intersection is
symmetric. It follows that rankEi = rankEt−i and C is symmetric. This proves
that 3◦ → 1◦.

The proof of the implication 1◦ → 2◦ shows that, for x ∈ C, (J∗)x is a complete
intersection if ϕx : (GrI(OP3)/J∗)x → (

⊕
0≤i≤t Ei)x is an isomorphism. So we

obtain the following

Proposition 1.6. Let C be a lci symmetric multiple structure on C and let x ∈
C. If ϕx : (GrI(OP3)/J∗)x → (

⊕
0≤i≤tEi)x is an isomorphism, then (J∗)x ⊂

GrIx(OP3,x) is a complete intersection.

2. Easy commutative algebra

In the sequel I will denote an ideal of a local regular ring R with dimR =
3. Let f ∈ R. We denote by deg f the largest s such that f ∈ Is (the degree
of f with respect to the I-adic filtration of R). We put f∗= the image of f in
Ideg f/Ideg f+1 ⊂ GrI(R) =

⊕
i≥0 I

i/Ii+1 (the initial form of f with respect to the

I-adic filtration of R).

Lemma 2.1 ([7]). Suppose J = (f, g) ⊂ I ⊂ R. If f∗ and g∗ form a regular
sequence in GrI(R), then J∗ = (f∗, g∗) where J∗ =

⊕
i≥0(J ∩ Ii) + Ii+1/Ii+1 ⊂

GrI(R).

Proposition 2.2. Let I = (x, y) ⊂ R where x and y are the regular parameters of
R and R is complete. Suppose that J = (f, g) ⊂ I where f and g form a regular
sequence. If f∗ ∈ GrI(R) = (R/I)[X,Y ] is irreducible (R/I is a discrete valuation
ring), then there exists h ∈ R such that J = (f, h) and J∗ = (f∗, h∗).
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Proof. If the Proposition is not true then it follows from Lemma 2.1 that, for any
h ∈ R such that J = (f, h), f∗ is a divisor of h∗ in GrI(R). So there exists
r1 ∈ Ib−a such that g − r1f ∈ Ib+1 where a = deg f and b = deg g. It also follows
that g − r1f − r2f ∈ Ib+2 for some r2 ∈ Ib−a+1 since J = (f, g − r1f). In this
way we obtain a sequence of elements r1, r2, . . . , ri, . . . such that ri ∈ Ib−a+i and,
for every i, g − (r1f + r2f + · · ·+ rif) ∈ Ib+i. Since R is complete,

∑
ri ∈ R and

g = (
∑
ri)f . But this is impossible since f and g form a regular sequence.

Proposition 2.3. Let I = (X,Y ) ⊂ k[[X,Y, Z]] and suppose J = (XY, g) such
that J ⊃ Ii for some g ∈ I and i ≥ 1. Then

1◦. J = (XY,αXk + βY l) with α, β invertible ∈ k[[X,Y, Z]], k, l ≥ 1.
2◦. For all i ≥ 1, k[[X,Y, Z]]/(J + Ii) is Cohen-Macaulay.

Proof. Let J = (XY, g) such that J ⊃ Ii for some g ∈ I and i ≥ 1. Then g
mod Y = αXk with α ∈ k[[X,Z]] invertible and k ≥ 1. It follows that g = αXk+rY
for some r ∈ k[[X,Y, Z]]. g mod X = βY l with β ∈ k[[Y, Z]] invertible and
l ≥ 1. So we obtain that (r mod X)Y = βY l and r = βY l−1 + sX for some
s ∈ k[[X,Y, Z]]. We infer that g = αXk + βY l + sXY and J = (XY,αXk + βY l).
This proves 1◦.

In order to prove 2◦ because of the symmetry of X and Y , we can suppose that
k ≤ l. We obviously have J + I = I. Moreover J + Ii = (XY,Xi, Y i) if 2 ≤ i ≤ k,
(XY,Xk, Y i) if k+ 1 ≤ i ≤ l and J + Ii = J for i ≥ l+ 1. It is easy to see that the
ideals J + Ii are determinantal and therefore, for all i ≥ 1, k[[X,Y, Z]]/(J + Ii) is
Cohen-Macaulay.

Remark. The multiple structure defined by J on Speck[[X,Y, Z]]/I is symmetric
only if k = l.

Proposition 2.4. Let I = (X,Y ) ⊂ k[[X,Y, Z]]. Then there does not exist J =
(XY Z, g) with g ∈ I such that J ⊃ Ii for some i ≥ 1.

Proof. It suffices to note that J mod Z is principal whereas I mod Z is a
height 2 ideal.

3. Multiple structures defined by two surfaces

Suppose C = supp(F ∩G) where F and G are two surfaces in P3. In the sequel J
will denote the ideal sheaf corresponding to the ideal of the homogeneous coordinate
ring of P3 which is generated by the equations of F and G. Obviously J defines a
multiple structure on C.

Proposition 3.1. For the multiple structure C defined above Et ≈ ωC(4−m− n)
where m = degF , n = degG and ωC is a canonical bundle on C.

Proof. The exact sequence 0 → Et → O/Jt+1 → O/Jt → 0 (O = OP3) induces
the map ωC ≈ Ext2(O/Jt+1, ωP3) → Ext2(Et, ωP3) which is surjective since O/Jt
is lCM and hence Ext3(O/Jt, ωP3) = 0. At the generic point of C, Et = Jt/Jt+1 =
Jt/J is the highest nonvanishing power of the maximal ideal of the corresponding
local ring. Jt/Jt+1 is generically generated by one element since the local ring of
C at its generic point is Gorenstein. It follows that rankEt = rankJt/Jt+1 = 1.
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We obtain Ext2(Et, ωP3) ≈ ωC ⊗OC ≈ OC(m+ n− 4) since also Ext2(Et, ωP3)
is a rank one locally free sheaf on C. We further obtain

Et ≈ Ext2(Ext2(Et, ωP3), ωP3) ≈ Ext2(OC(m+ n− 4), ωP3)

≈ Ext2(OC , ωP3)(4−m− n) ≈ ωC(4−m− n)

which was to be proved.

For any x ∈ C let fx ∈ Ix ⊂ OP3,x be the element corresponding to the equation
of F . We denote by deg fx and f∗x respectively the degree and the initial form of

fx with respect to the Îx-adic filtration of ÔP3,x. Note that deg fx = degree of fx
with respect to the Ix-adic filtation of OP3,x. In the same way we define deg gx and
g∗x where gx is the element of Ix corresponding to G.

Let F ⊂ P3 be a surface containing C. Then F ∈ H0(Ik(m)) where m =
degF and k ≥ 1 (note a slight abuse of the notation). So F induces a section of
Ik/Ik+1(m). Note that there exists a unique k such that the induced section of
Ik/Ik+1(m) is nonzero.

Theorem 3.2. Suppose C = supp(F ∩ G) with degF = m and degG = n and
suppose that, for every x ∈ C, J∗x ⊂ GrIx(OP3,x) is a complete intersection. If

F defines a nonzero section of Ik/Ik+1(m) and G defines a nonzero section of
I l/I l+1(n)) with k ≤ l, then

1◦. mn = k(t− k + 2)d where d = degC.
2◦. ω⊗k(t−k+2) ≈ OC(kn+ (t− k+ 2)(m− 4k)) where ω is a canonical bundle of

C.

In particular k(t− k+ 2)(2g− 2) = d[kn+ (t− k+ 2)(m− 4k)] where g denotes
the genus of C.

Proof. Let x ∈ C. Then J∗x = (h1, h2) with k = degh1 ≤ deg h2. Moreover the
Hilbert function of

⊕
0≤i≤tEi is equal to the Hilbert function of

GrIx(OP3,x)/J∗x = (OP3,x/Ix)[X,Y ]/(h1h2)

since ϕ : GrI(OP3)/J∗ →
⊕

0≤i≤t Ei is an isomorphism by Proposition 1.3.

rankEi =


i+ 1, 0 ≤ i ≤ k − 1,

k, k ≤ i ≤ deg h2 − 1,

k + deg h2 − i− 1, deg h2 ≤ i ≤ t.

It follows that degh2 = t− k+ 2 since rankEt = 1. An easy calculation shows that∑t
i=0 rankEi = k(t− k+ 2). To prove 1◦ it suffices to apply Proposition 1.1 to the

multiple structure C and note that degC = mn (Bezout).
Suppose first that k = deg h1 < deg h2. Then, for each x ∈ C, J∗x is generated

by f∗x with deg f∗x = k and some element of GrIx(OP3,x) of degree t− k+ 2 > k. It
follows that J∗x in degree t− k+ 1 is generated by f∗x . F induces a monomorphism
OC(−m)→ Ik/Ik+1. We obtain that

J∗t−k+1 ≈ OC(−m)⊗ It−2k+1/It−2k+2

and

Et−k+1 ≈ St−k+1(N)/OC(−m)⊗ St−2k+1(N)
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where N denotes the conormal bundle I/I2 and Si(N) its i-th symmetric power. It
follows from Proposition 1.4 and Proposition 3.1 (C is obviously symmetric) that

Ek−1 ≈ Hom(Et−k+1, ω(4−m− n)) ≈ (Et−k+1)∗ ⊗ ω(4−m− n).

So we get

Sk−1(N) ≈ (St−k+1(N)/OC(−m)⊗ St−2k+1(N))∗ ⊗ ω(4−m− n)

since Ek−1 ≈ Sk−1(N). Extracting the highest exterior powers we obtain that

(ω⊗−1(−4))⊗k(k−1)/2 ≈ OC(−m)⊗t−2k+2 ⊗ (ω⊗−1(−4))⊗(t−2k+1)(t−2k+2)/2

⊗ (ω⊗−1(−4))⊗−(t−k+1)(t−k+2)/2 ⊗ (ω(4−m− n))⊗k

since Λ2N ≈ ω⊗−1(−4) and, for any i, Λi+1Si(N) ≈ (Λ2N)⊗i(i+1)/2 (apply the
splitting principle). Now an easy (but tedious) calculation concludes the proof.

If k = degh2, then t = 2k − 2 and Ek−1 ≈ Hom(Ek−1, ω(4−m− n)). Ek−1 =
Sk−1(N) and proceeding as above we obtain 2◦ with t = 2k − 2.

Extracting the degrees of both sides of 2◦ we easily obtain that

k(t− k + 2)(2g − 2) = d[kn+ (t− k + 2)(m− 4k)].

Proposition 3.3. Let J be the ideal sheaf of the multiple structure on C =
supp(F ∩G) which was defined above. Suppose that ϕ : GrI(OP3)/J∗ →

⊕
0≤i≤tEi

is an isomorphism over a (nonempty) open set U ( C. If for all x ∈ C − U ei-

ther f∗x ∈ GrÎx(ÔP3,x) or g∗x ∈ GrÎx(ÔP3,x) is irreducible, then, for every x ∈ C,

J∗x ⊂ GrIx(OP3,x) is a complete intersection.

Proof. By Proposition 2.2 the extension of J∗x to GrÎx(ÔP3,x) is a complete intersec-

tion if x ∈ C −U . It follows that also J∗x ⊂ GrIx(OP3,x) is a complete intersection.

By Proposition 1.5 the multiple structure C is symmetric. Applying Proposition 1.6
we obtain that J∗x ⊂ GrIx(OP3,x) is a complete intersection if x ∈ U .

Corollary 3.4. Suppose C = supp(F ∩G) with degF = m and degG = n and let
the ideal sheaf J of the multiple structure C satisfy the hypotheses of Proposition 3.3,
i.e. there exists a nonempty open set U ( C such that ϕx: (GrI(OP3)/J∗)x →
(
⊕

0≤i≤t Ei)x is an isomorphism for x ∈ U and for all x ∈ C − U either f∗x ∈
GrÎx(ÔP3,x) is irreducible or g∗x ∈ GrÎx(ÔP3,x) is irreducible. If F defines a nonzero

section of Ik/Ik+1(m) and G defines a nonzero section of I l/I l+1(n)) with k ≤ l,
then

1◦. mn = k(t− k + 2)d where d = degC.
2◦. ω⊗k(t−k+2) ≈ OC(kn+ (t− k+ 2)(m− 4k)) where ω is a canonical bundle of

C.

In particular k(t− k+ 2)(2g− 2) = d[kn+ (t− k+ 2)(m− 4k)] where g denotes
the genus of C.

Remark. In view of the Remark following Proposition 1.3 the condition which con-
cerns the points of C − U is the only essential hypothesis.
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4. Ordinary singularities

Recall that a surface F ⊂ P3
k (chk = 0) admits ordinary singularities if SingF is

a curve (possibly reducible) and, for x ∈ SingF , ÔF,x is one of the following:

1. For almost all x ∈ SingF , ÔF,x ≈ k[[X,Y, Z]]/(XY ) is an ordinary double
point.

2. ÔF,x ≈ k[[X,Y, Z]]/(XYZ) is an ordinary triple point.

3. ÔF,x ≈ k[[X,Y, Z]]/(X2 − Y 2Z) is a pinch point.

It is well known that if chk = 0, then a generic projection of any (projective) smooth
surface into P3

k admits only ordinary singularities.

Theorem 4.1. Let C be a (smooth) curve contained in the singular locus of a
surface F ⊂ P3 which along C admits only ordinary singularities and among them
at least one pinch point. If there exists a surface G ⊂ P3 such that C = supp(F∩G),
then
mn = 2td and
ω⊗2t ≈ OC(2n+ tm− 8t) if G is singular along (whole) C or
mn = (t+ 1)d and
ω⊗(t+1) ≈ OC(m+ (t+ 1)(n− 4)) otherwise

where as before ω is a canonical bundle of C,m = degF , n = degG, d = degC
and t is the least i such that J ⊃ Ii+1 (I is the ideal sheaf of C and J is the ideal
sheaf corresponding to the ideal generated by F and G).

Proof. Let U denote the (open) set of C which consists of ordinary double points of
F . It follows from Proposition 1.3 and Proposition 2.3 that ϕx : (GrI(OP3)/J∗)x →
(
⊕

0≤i≤t Ei)x is an isomorphism for x ∈ U . Moreover it follows from Proposition 2.4
that F has no ordinary triple points along C. So if x ∈ C − U , then

f∗x = X2 − Y 2Z ∈ GrÎx(ÔP3,x) = k[[Z]][X,Y ]

is irreducible. The application of Theorem 3.2 with k = 2 and k = 1 respectively
concludes the proof. (Note that in case k = 1 the roles of m and n are interchanged.)

Proposition 4.2. Let C be a (smooth) curve contained in the singular locus of a
surface F ⊂ P3. If F admits along C only ordinary double points, then ω⊗2 ≈
OC(2m− 8) where m = degF .

Remark. Note that we do not make any C = supp(F ∩G) assumption!

Proof. Recall first that for any locally free sheaf P there is a map ϕ : S2(P ∗) →
(S2P )∗ defined locally by ϕ(f1⊗ f2)(x⊗ y) = f1(x)f2(y) + f1(y)f2(x) with f1, f2 ∈
P ∗ and x, y ∈ P .

The surface F defines the map OC(−m) → I2/I3 = S2(I/I2). Composing the
dual map S2(I/I2)∗ → OC(m) with ϕ we obtain α : S2((I/I2)∗) → OC(m). We
claim that the induced map α′ : (I/I2)∗ → Hom((I/I2)∗,OC(m)) is an isomor-
phism. It suffices to check this at the completion of the local ring at each point
of C. So we can assume that I = (x, y) and OC(−m) is freely generated by one
element e (say). Moreover the map OC(−m)→ I2/I3 associates xy to e. (Note a
slight abuse of notation). Let (x∗, y∗) be the dual basis of the basis (x, y) of I/I2.
One checks easily that α((x∗)2) = 0, α(x∗y∗) = e and α((y∗)2) = 0. It follows that
α′ is an isomorphism. So we obtain that

(I/I2)∗ ≈ Hom((I/I2)∗,OC(m)) ≈ (I/I2)⊗OC(m).
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Hence

(Λ2(I/I2))∗ ≈ Λ2(I/I2)⊗OC(2m)

and

(ω⊗−1(−4))∗ ≈ ω⊗−1(−4)⊗OC(2m).

This implies that ω⊗2 ≈ OC(2m− 8) which was to be proved.

Corollary 4.3. Let C be a smooth rational curve of degree d ≥ 3 contained in the
singular locus of a surface F ⊂ P3. Then C is not a set theoretic intersection on
F if F has along C ordinary singularities.

Proof. Suppose F has alongC only ordinary double points. Then by Proposition 4.2
ω⊗2 ≈ OC(2m − 8). Extracting degrees we obtain −4 = d(2m − 8). This is not
possible if d ≥ 3, so F admits along C at least one pinch point and we can apply
Theorem 4.1. If the singular locus of G contains C, then mn = 2td and extracting
degrees we obtain −4t = d(2n+mt− 8t). Putting n = 2td/m in the last equation
we get (after simplifications) the following quadratic equation with respect to m:

dtm2 + 4t(1− 2d)m+ 4td2 = 0.

So the discriminant D = 16t2(1−2d)2−16t2d3 ≥ 0. We infer that (1−2d)2−d3 ≥ 0.
It follows that d2 − 3d + 1 ≤ 0 since (1 − 2d)2 − d3 = −(d − 1)(d2 − 3d + 1) and

d ≥ 3. If d2− 3d+ 1 ≤ 0 holds, then d ≤ (3 +
√

5)/2 < 3. So if C is set-theretically
the intersection of F and G, then C is not contained in the singular locus of G.
So by Theorem 4.1 ω⊗(t+1) ≈ OC(m + (t + 1)(n − 4)). Taking degrees we obtain
−2(t + 1) = d[m + (t + 1)(n − 4)]. It follows that n < 4 since −2(t + 1) < 0,
d,m, t+ 1 > 0. The cases n = 1 and n = 2 are not possible since C is not a plane
curve and C is not a set-theoretic complete intersection on a quadric. If n = 3
we obtain −2(t + 1) = dm − d(t + 1). But by Theorem 4.1 d(t + 1) = 3m. So
−2(t+ 1) = (d − 3)m. This equality cannot hold since d ≥ 3. It follows that C is
not a set theoretic complete intersection on F .

Corollary 4.4. Let C be a smooth rational curve on a surface F ⊂ P3
k which

admits only ordinary singularities. If degC = 4 or degC ≥ 5 and C is general,
then C is not a set theoretic complete intersection on F .

Proof. By [3] C is not a set theoretic complete intersection on F if C 6⊂ SingF (the
assumption that F is irreducible is not used in the proof). If C ⊂ SingF we apply
Corollary 4.3.

Remark. Generality of C means that its normal bundle in P3 is semistable.
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