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ON A THEOREM OF PRIVALOV AND NORMAL FUNCTIONS

DANIEL GIRELA

(Communicated by Albert Baernstein II)

Abstract. A well known result of Privalov asserts that if f is a function which
is analytic in the unit disc ∆ = {z ∈ C : |z| < 1}, then f has a continuous
extension to the closed unit disc and its boundary function f(eiθ) is absolutely
continuous if and only if f ′ belongs to the Hardy space H1. In this paper we
prove that this result is sharp in a very strong sense. Indeed, if, as usual,
M1(r, f ′) = 1

2π

∫ π
−π
∣∣f ′(reiθ)

∣∣ dθ, we prove that for any positive continuous

function φ defined in (0, 1) with φ(r) → ∞, as r → 1, there exists a function
f analytic in ∆ which is not a normal function and with the property that
M1(r, f ′) ≤ φ(r), for all r sufficiently close to 1.

1. Introduction and statement of results

Let ∆ denote the unit disc {z ∈ C : |z| < 1}. For 0 < r < 1 and g analytic in ∆
we set

Mp(r, g) =

(
1

2π

∫ π

−π

∣∣g(reiθ)
∣∣p dθ)1/p

, 0 < p <∞,

M∞(r, g) = max
|z|=r

|g(z)|.

For 0 < p ≤ ∞ the Hardy space Hp consists of those functions g, analytic in ∆, for
which

||g||Hp = sup
0<r<1

Mp(r, g) <∞.

A classical result of Privalov [8, Th. 3.11] asserts that a function f analytic in
∆ has a continuous extension to the closed unit disc ∆ whose boundary values are
absolutely continuous on ∂∆ if and only if f ′ ∈ H1. In particular, f ′ ∈ H1 ⇒ f ∈
H∞. The question of studying the possibility of obtaining results of this kind if
the condition f ′ ∈ H1 is slightly weakened has been considered by several authors.
A result of Bennet and Stoll [3] shows that if the function f is analytic in ∆ and
f ′ is the Cauchy-Stieltjes integral of a finite complex Borel measure on ∂∆, then
f belongs to BMOA, the space of all H1-functions whose boundary values have
bounded mean oscillation on ∂∆. A stronger result was obtained by Baernstein and
Brown in [2]. Indeed, Proposition 3 of [2] shows that if the function f is analytic
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c©1997 American Mathematical Society

433



434 DANIEL GIRELA

in ∆ and f ′ ∈ weak-H1, then f belongs to the mean Lipschitz space Λ(2, 1/2), and
it is well known that Λ(2, 1/2) ⊂ BMOA (see [7] and [6]).

On the other hand, Yamashita proved in [18] that there exists a function f
analytic in ∆ with f ′ ∈ Hp for all p ∈ (0, 1) but such that f is not even a normal
function in the sense of Lehto and Virtanen [9]. We recall that a function f which
is meromorphic in ∆ is a normal function if and only if

sup
z∈∆

(1− |z|2)
|f ′(z)|

1 + |f(z)|2 <∞.

We refer to [1] and [15] for the theory of normal functions.
In view of these results, it seems natural to study what happens if we substitute

the condition f ′ ∈ H1 by a condition of the type “M1(r, f ′) grows to ∞ slowly
enough”.

Let us start considering some very simple functions. For every ε > 0, we set

fε(z) =

(
log

1

1− z + iπ

)1+ε

, z ∈ ∆.(1)

Then, for every ε > 0, fε is holomorphic in ∆ and it is easy to see that

M1(r, f ′ε) = O

((
log

1

1− r

)1+ε
)
, as r → 1,(2)

while,

f ′ε(r) ≈ (1 + ε)
1

1− r

(
log

1

1− r

)ε
, as r→ 1.(3)

Notice that (3) shows that fε is not a Bloch function (see [1] for the theory of Bloch
functions) and, hence, f /∈ BMOA. Consequently, we see that the condition

M1(r, f ′) = O

((
log

1

1− r

)1+ε
)
, as r → 1,

for some ε > 0 does not even imply that f is a Bloch function. However, we can
prove a much stronger result showing that no restriction on the growth of M1(r, f ′)
other than its boundedness is enough to conclude that f is a normal function. More
precisely, we can prove the following result.

Theorem 1. Let φ be any positive continuous function defined in [0, 1) with φ(r)→
∞, as r → 1. Then, there exists a function f analytic in ∆ which is not a normal
function and having the property that

M1(r, f ′) ≤ φ(r), for all r sufficiently close to 1.

2. Proof of Theorem 1

Clearly, it suffices to prove that there exists a function f which is analytic and
non-normal in ∆ and a constant C > 0 such that

M1(r, f ′) ≤ Cφ(r), for all r sufficiently close to 1.(4)

Also, we may assume without loss of generality that φ satisfies also the following
two conditions:

φ is increasing and φ(r) ≥ 1 for all r ∈ [0, 1),(5)
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and

(1− r)2φ(r)→ 0, as r → 1.(6)

Indeed, let φ be as in Theorem 1. There exists a positive constant A such that
Aφ(r) ≥ 1 for all r ∈ [0, 1). Then, we set

φ1(r) = min

(
Aφ(r),

2

1− r

)
, 0 < r < 1,

and we let φ2 denote the highest increasing minorant of φ1, that is,

φ2(r) = inf
r≤s<1

φ1(s), 0 ≤ r < 1.

Then it is clear that φ2 is a positive and continuous function in [0, 1) with φ2(r) ≤
Aφ(r), for all r ∈ [0, 1) and φ2(r) → ∞, as r → 1. Furthermore, (5) and (6) hold
with φ2 in the place of φ.

Hence we shall assume that φ satisfies (5) and (6) in addition to the conditions
of Theorem 1.

Let ω : [0, 1]→ R be defined as follows:{
ω(0) = 0,

ω(δ) = δφ(1− δ)1/2, 0 < δ ≤ 1.
(7)

Hence,

φ(r) =

[
ω(1− r)

1− r

]2

, 0 < r < 1.(8)

Using (6), it is easy to see that ω is positive and continuous in [0, 1]. Moreover,

ω(δ)

δ
→∞, as δ → 0,(9)

and (5) implies

ω(δ)

δ
is decreasing in (0, 1](10)

and

ω(δ) ≥ δ, for all δ ∈ [0, 1].(11)

Take a fixed number λ with 0 < λ < 1 and let us consider the sequence of
numbers {δn}∞n=0, defined inductively as

δ0 = 1,

δn+1 = min

{
δ ∈ [0, 1) : max

[
ω(δ)

ω(δn)
,
ω(δn)δ

δnω(δ)

]
= λ

}
, n ≥ 0.

(12)

This sequence was defined by K. I. Oskolkov in [11, 12, 13] and [14] (see also [10])
under the hypothesis of ω being a modulus of continuity, hence, (see Proposition
2.1 of [4]) in these papers ω is assumed to be increasing and subadditive. However,
it is clear that the definition of {δn} makes sense in our setting. In the following
lemma we shall list the main properties of the sequence {δn} which will be used in
the sequel.
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Lemma 1. Let ω and λ be as above and let {δn}∞n=0 be defined by (12). Then {δn}
is a decreasing sequence of positive numbers with δn → 0, as n → ∞. Moreover,
for all n ≥ 0, we have

ω(δn+1) ≤ λω(δn),(13)

δn+1 ≤ λ2δn,(14)

ω(δn+1)δn+1 ≤ λ3ω(δn)δn.(15)

Furthermore, there exists an absolute constant β > 0 (which depends only on λ)
such that

∞∑
k=0

ω(δk) min

(
1,
δn
δk

)
≤ βω(δn), n ≥ 1.(16)

We remark that (16) is the substitute in our setting of the inequality (2.12) of
[13].

Proof of Lemma 1. First let us notice that (13) and (14) are direct consequences
of the definition of the sequence {δn}, and then (15) and the fact that δn tends
monotonically to zero follow trivially.

Since {δn} is decreasing, we have

∞∑
k=0

ω(δk) min

(
1,
δn
δk

)
=

n∑
k=0

ω(δk)
δn
δk

+
∞∑

k=n+1

ω(δk).(17)

Notice that (12) implies that

ω(δk)

δk
≤ λω(δk+1)

δk+1
, k ≥ 0,

and, hence,

ω(δk)

δk
≤ λn−k ω(δn)

δn
, 0 ≤ k ≤ n.(18)

On the other hand, (13) implies that

ω(δk) ≤ λk−nω(δn), k ≥ n.(19)

Then, using (17), (18) and (19), we deduce that

∞∑
k=0

ω(δk) min

(
1,
δn
δk

)
≤

n∑
k=0

λn−kω(δn) +
∞∑

k=n+1

λk−nω(δn)

≤ 2

 ∞∑
j=0

λj

ω(δn)

=
2

1− λω(δn).

This proves (16) with β = 2
1−λ finishing the proof of Lemma 1.
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Once Lemma 1 has been proved, we continue the proof of Theorem 1. The
function f that we are going to construct to prove Theorem 1 will be of the form
f(z) = B(z)F (z), where B will be a Blaschke product while the function F will
be given by a series of analytic functions in ∆ which converges uniformly on every
compact subset of ∆. We start with the construction of the Blaschke product B,
but first let us remark that from now on we shall be using the convention that C
will denote an absolute positive constant which may be different at each occurrence.

Notice that (13) implies that ω(δn) → 0, as n → ∞, and, hence, there exists a
positive integer N such that ω(δn) < 1, if n ≥ N . Define

an = 1− δnω(δn), n ≥ N.(20)

Notice that (15) implies that the sequence {an}∞n=N satisfies the Blaschke condition,
that is,

∑∞
n=N (1− |an|) <∞. Let B denote the Blaschke product whose zeros are

{an}∞n=N , that is,

B(z) =
∞∏
n=N

an − z
1− anz

, z ∈ ∆.(21)

Now, we set

rn = 1− δn, n ≥ N.(22)

Protas proved in [16, p. 394] that∫ π

−π
|B′(reiθ)| dθ ≤ 8π

∑
k

1− |ak|
1− r + 1− |ak|

, 0 < r < 1.

Using this inequality, (22) and (20), we deduce that, for every n ≥ N , we have

(1− rn)M1(rn+1, B
′) ≤ C(1− rn)

∞∑
k=N

1− |ak|
1− rn+1 + 1− |ak|

= C
∞∑
k=N

ω(δk)

[
δnδk

δn+1 + δkω(δk)

]
.

(23)

Now, (11) implies that δ2
k ≤ δn+1 + δkω(δk) and hence it follows that

δkδn
δn+1 + δkω(δk)

≤ δn
δk
, k, n ∈ N.(24)

On the other hand, since the sequence {δn} is decreasing, we easily see that

δkδn
δn+1 + δkω(δk)

≤ 1, if k > n,

which, using again the fact that {δn} is decreasing and (24), implies

δkδn
δn+1 + δkω(δk)

≤ min

(
1,
δn
δk

)
, k, n ∈ N.(25)

Then (23), (25) and (16) give

(1− rn)M1(rn+1, B
′) ≤ Cω(δn), n ≥ N,

or, equivalently,

M1(rn+1, B
′) ≤ Cω(δn)

δn
, n ≥ N.(26)
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Now we turn to construct the above mentioned function F . We set

F (z) =
∞∑
j=N

ω(δj)δj
1− z + ω(δj)δj

, z ∈ ∆.(27)

Clearly, this series converges uniformly on each compact subset of ∆, and therefore
it defines a function which is analytic in ∆. Using (22), (25) and (16), we deduce
that, for every n ≥ N , we have

(1− rn)M∞(rn+1, F ) ≤ δn
∞∑
j=N

ω(δj)δj
δn+1 + ω(δj)δj

≤ Cω(δn),

or, equivalently,

M∞(rn+1, F ) ≤ Cω(δn)

δn
.(28)

Now, we have

F ′(z) =
∞∑
j=N

ω(δj)δj

(1− z + ω(δj)δj)
2 , z ∈ ∆,

and therefore we conclude that

M1(r, F ′) ≤ C
∞∑
j=N

ω(δj)δj

∫ π

−π

dθ

|1 + ω(δj)δj − reiθ|2

= C
∞∑
j=N

ω(δj)δj
(1 + ω(δj)δj)2

∫ π

−π

dθ∣∣∣1− reiθ

1+ω(δj)δj

∣∣∣2
≤ C

∞∑
j=N

ω(δj)δj
(1 + ω(δj)δj)2

1

1− r
1+ω(δj)δj

≤ C
∞∑
j=N

ω(δj)δj
1− r + ω(δj)δj

,

(29)

which, with (22), implies

(1− rn)M1(rn+1, F
′) ≤ C

∞∑
j=N

ω(δj)
δnδj

δn+1 + ω(δj)δj
, n ≥ N,(30)

and then, noticing that the right hand side of (30) and the right hand side of (23)
are the same and arguing as in the proof of (26), we obtain

M1(rn+1, F
′) ≤ Cω(δn)

δn
, n ≥ N.(31)

Finally, notice that for every j

ω(δj)δj
1− r + ω(δj)δj

is a positive increasing function of r in (0, 1) and hence, using Lebesgue’s monotone
convergence theorem, we deduce that

lim
r→1−

F (r) =
∞∑
j=N

lim
r→1−

ω(δj)δj
1− r + ω(δj)δj

=∞.(32)
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Once the functions B and F have been constructed, we set

f(z) = B(z)F (z), z ∈ ∆.(33)

Then, since |B(z)| ≤ 1 for all z, using (26), (28), (31), (11), (8) and (22), we deduce
that, for every n ≥ N ,

M1(rn+1, f
′) ≤M1(rn+1, B

′)M∞(rn+1, F ) +M1(rn+1, F
′)

≤ C
(
ω(δn)

δn

)2

+ C
ω(δn)

δn

≤ C
(
ω(δn)

δn

)2

= Cφ(rn).

(34)

Now, since M1(r, f ′) and φ(r) are increasing functions of r, using (34), we deduce
that

M1(r, f ′) ≤M1(rn+1, f
′) ≤ Cφ(rn) ≤ Cφ(r), rn ≤ r ≤ rn+1, n ≥ N.

Hence

M1(r, f ′) ≤ Cφ(r), rN ≤ r < 1.(35)

Now observe that (15) and (20) imply that the sequence {an} is uniformly separated
(see Chapter 9 of [15]). Hence, there exists γ > 0 such that

(1− |an|2)|B′(an)| =
∞∏
j=N
j 6=n

∣∣∣∣ aj − an1− ajan

∣∣∣∣ ≥ γ, n ≥ N.(36)

Since B(an) = 0, computing the spherical derivative of f at an yields

(1− |an|2)
|f ′(an)|

1 + |f(an)|2 =(1− |an|2)
|F ′(an)B(an) + F (an)B′(an)|

1 + |B(an)F (an)|2
=(1− |an|2)|B′(an)||F (an)|

which, using (36) and (32), implies

(1− |an|2)
|f ′(an)|

1 + |f(an)|2 →∞, as n→∞,

and, hence, we see that f is not a normal function. Notice that (35) shows that f
satisfies (4) and so this finishes the proof.

3. Final remarks and some further results

(i) If f is a function which is analytic in ∆ and the non-tangential limit f(eiθ)
exists almost everywhere on ∂∆, then (see [8, p. 72]), for p > 0, ωp(f, .) denotes
the integral modulus of continuity of order p of the boundary function f(eiθ), that
is,

ωp(f, δ) = sup
0<h<δ

(∫ π

−π
|f(ei(t+h))− f(eit)|p dt

)1/p

, −π < δ < π.

It is well known that there is a close connection between the behaviour of ωp(f, δ),
as δ → 0, and the growth of integral means of the derivative Mp(r, f

′) as r → 1
(see Chapter 5 of [8] and [5]). I wish to express my gratitude to Alexei Solianik
who, in a private communication, showed to the author that for a certain modulus
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of continuity ω(δ) with ω(δ)
δ → ∞, as δ → 0, there exists a function f ∈ H1 with

ω1(f, δ) = O (ω(δ)) , as δ → 0, and f /∈ BMOA. This result motivated our work
and, in fact, using Theorem 2.1 of [5] and Theorem 1, we can state the following
improvement of Solianik’s result.

Theorem 2. Let ρ(t) be a positive increasing function in [0, 1) satisfying the fol-
lowing two conditions.

(a) Dini’s condition: ρ(t)/t ∈ L1 ((0, 1)) and there is a constant C such that∫ t

0

ρ(s)

s
ds ≤ Cρ(t), 0 < t < 1.

(b) The condition b1: There exists a constant C such that∫ 1

t

ρ(s)

s2
ds ≤ C ρ(t)

t
, 0 < t < 1.

If ρ(δ)
δ → ∞, as δ → 0, then there exists a function f ∈ H1 which is not a

normal function and satisfying

ω1(f, δ) = O (ρ(δ)) , as δ → 0.

(ii) It is well known that if f is a function which is analytic in ∆ and has finite
Dirichlet integral, that is, if∫∫

|z|<1

|f ′(z)|2 dx dy <∞,

then f ∈ Λ(2, 1/2) ⊂ BMOA. On the other hand, Yamashita proved in [17] that
given 0 < p < 2 there exists a function f analytic in ∆ with

∫∫
∆
|f ′(z)|p dx dy <∞

but such that f is not a normal function.
These results lead us to consider the question of whether or not some restriction

on the growth of ∫∫
|z|<r

|f ′(z)|2 dx dy, as r→ 1,

other than its boundedness, is enough to conclude that f is a normal function.
Theorem 3 asserts that the answer to this question is negative.

Theorem 3. Let φ be any positive continuous function defined in [0, 1) with φ(r)→
∞, as r → 1. Then, there exists a function f analytic in ∆ which is not a normal
function and having the property that(∫∫

|z|<r
|f ′(z)|2 dx dy

)1/2

≤ φ(r), for all r sufficiently close to 1.

Proof of Theorem 3. Just as in the proof of Theorem 1, we may assume without
loss of generality that the function φ also satisfies (5) and (6), and it suffices to
prove that there exists a non-normal analytic function f in ∆ satisfying(∫∫

|z|<r
|f ′(z)|2 dx dy

)1/2

≤ Cφ(r), for all r sufficiently close to 1.(37)
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Let f be the function defined in the proof of Theorem 1. Since B is a Blaschke
product, we easily see that, for 0 < r < 1,(∫∫

|z|<r
|f ′(z)|2 dx dy

)1/2

≤
(∫∫

|z|<r
|F ′(z)|2 dx dy

)1/2

+M∞(r, F )

(∫∫
|z|<r

|B′(z)|2 dx dy
)1/2

.

(38)

Using arguments similar to those used in the proof of Theorem 1, we can prove
that (∫∫

|z|<r
|F ′(z)|2 dx dy

)1/2

≤ C
∞∑
j=N

ω(δj)δj
1− r + ω(δj)δj

, 0 < r < 1,(39)

and (∫∫
|z|<r

|B′(z)|2 dx dy
)1/2

≤ C
∞∑
j=N

ω(δj)δj
1− r + ω(δj)δj

, 0 < r < 1.(40)

Notice that the right hand side of (39) coincides with the last term of (29) and
then, just as in the proof of (31), we obtain(∫∫

|z|<rn+1

|F ′(z)|2 dx dy
)1/2

≤ Cω(δn)

δn
, n ≥ N.(41)

On the other hand, (40) and (22) show that

(1− rn)

(∫∫
|z|<rn+1

|B′(z)|2 dx dy
)1/2

≤ C
∞∑
j=N

ω(δj)

[
δnδj

δn+1 + ω(δj)δj

]
, n ≥ N.

(42)

Notice that the right hand side of (42) and the right hand side of (23) coincide and
then, arguing as in the proof of (26), we obtain(∫∫

|z|<rn+1

|B′(z)|2 dx dy
)1/2

≤ Cω(δn)

δn
, n ≥ N.(43)

Then, using (38), (41), (28) and (43) and having in mind (11), the definitions of
δn and rn and (8), we obtain(∫∫

|z|<rn+1

|f ′(z)|2 dx dy
)1/2

≤ Cφ(rn), n ≥ N.(44)

Finally, since
(∫∫

|z|<r |f ′(z)|2 dx dy
)1/2

and φ(r) are increasing functions of r, ar-

guing as in the proof of (35), we see that (44) implies(∫∫
|z|<r

|f ′(z)|2 dx dy
)1/2

≤ Cφ(r), rN ≤ r < 1.

This proves (37) and, since we already know that f is not a normal function, finishes
the proof.
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Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga,

29071 Málaga, Spain

E-mail address: Girela@ccuma.sci.uma.es


