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Abstract. Let Sk =
{
(y, |y|k) : y ∈ Rn−1

}
⊂ Rn and σ be the measure

defined by 〈σ, φ〉 =
∫
Rn−1 φ(y, |y|k)dy. Let σP denote the measure obtained

by restricting σ to the set P = [0,∞)n−1. We prove estimates on σP ∗ σP .
As a corollary we obtain results on the restriction to Sk ⊂ R3 of the Fourier
transform of functions on R3 for k ∈ R, 2 < k < 6.

§1. Introduction

Given a submanifold S of Rn and a smooth measure σ on S, one may ask for
what values of p and q the a priori estimate

‖f̂ |S‖Lq(σ) ≤ Cp,q‖f‖Lp(Rn), f ∈ S(Rn),(1.1)

holds. Here f̂ |S denotes the restriction of the Fourier transform of f to S, and
S(Rn) is the Schwartz class of smooth, rapidly decreasing functions. Estimates
of this type are known as restriction theorems. We refer to [S] and the references
contained therein for the history and general discussion of these estimates. When
S is the unit circle in R2 (1.1) holds if and only if 1 ≤ p < 4/3 and 1/q ≥ 3(1−1/p)
(Fefferman [F], Sjölin (see [H]), Zygmund [Z]). Fefferman’s original proof of this
result was based on a careful analysis of the convolution g dσ ∗ g dσ, where g is a
function defined on the circle.

On the other hand restriction theorems for the unit sphere and other nondegener-
ate hypersurfaces in Rn have been obtained by an entirely different approach based
on the observation by Tomas [T] that when q = 2 the estimate (1.1) is equivalent
to the estimate

‖σ̂ ∗ f‖Lp′(Rn) ≤ C‖f‖Lp(Rn),(1.2)

where p′ = p/(p − 1) is the exponent conjugate to p. One can prove (1.2) for
p = p0 = 2(n+ 1)/(n+ 3) by analytic interpolation (see [S, Sz]). This value of p is
sharp when q = 2. (Interpolating this result with the trivial L1–L∞ estimate gives
the optimal value of p when q > 2.) But this approach fails to give new information
for q < 2. The important problem of obtaining sharp Lp–Lq restriction estimates
for the sphere in Rn (n ≥ 3) is still open, although Bourgain [Bo] has recently made
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major progress toward the solution of this problem by showing that there exists
some p > p0 such that (1.1) holds for q = 1.

Consider the hypersurface Sk = {(y, |y|k) : y ∈ Rn−1} in Rn and the measure
dµ = χdσ, where 〈σ, φ〉 =

∫
Rn−1 φ(y, |y|k)dy, and χ is a smooth cut-off function.

When q ≤ 2 and k > 2, it is possible to use the result for q = 2 in the nondegenerate
case and a scaling argument to prove restriction estimates for Sk when p < p0 =
2(n+ 1)/(n+ 3). (This fact was pointed out to us by a referee to an earlier version
of this paper. See [B].)

In this paper we prove (global) restriction estimates for Sk when n = 3:

‖f̂ |Sk‖L8/(k+2),∞(σ) ≤ C‖f‖L4/3(R3)(1.3)

if k ∈ R, 2 < k < 6. (Here Lp,∞ is the weak Lp space.) Since p0 = 4/3 when
n = 3, this is stronger than the result that can be obtained by the scaling argument
mentioned above. This weak type estimate implies sharp Lorentz space estimates

for the restriction of f̂ to Sk when f ∈ Lp(R3), p < 4/3. Our method of proof
is similar in spirit to Fefferman’s original proof for the circle: after an application
of the Plancherel theorem we are led to estimate the convolution σP ∗ σP , where
σP is the measure defined by 〈σP , φ〉 =

∫
P φ(y, |y|k)dy with P = [0,∞) × [0,∞).

We show in section 2 how these estimates on σP ∗ σP imply (1.3), and prove the
estimates on the convolution in section 3.

A few words about notation. We let C denote a positive constant whose actual
value may vary. We use the symbol a . b to indicate that a ≤ Cb. We write a ≈ b
if a . b and b . a. Lp,q denotes a Lorentz space (see [SW]), and |E| is the Lebesgue
measure of the set E.

§2. Statement of results

Consider the surface S ⊂ R3 given by S =
{

(y, γ(|y|)) : y ∈ R2
}

, where γ satis-
fies the following hypotheses.

(2.1) Hypotheses on γ. We assume γ : [ 0,∞) → [ 0,∞) is a C2 function such
that γ(0) = γ′(0) = 0 and γ′(r)/r is increasing for r > 0, and that there exist a real
number k ≥ 2 and constants 0 < C1 ≤ C2 <∞ such that C1r

k−2 ≤ γ′′(r) ≤ C2r
k−2

for r ≥ 0.

(2.2) Remark. It follows from (2.1) that γ′(r) ≈ rk−1, γ(r) ≈ rk, and that γ is
strictly convex and strictly increasing. Also note that the condition that γ′(r)/r
is increasing would follow if γ′′′(r) ≥ 0. (To see this note that if γ′′′(r) ≥ 0, then
γ′(r) =

∫ r
0
γ′′(s)ds ≤ rγ′′(r), and so γ′(r)/r has a positive derivative.)

We now state our restriction results.

(2.3) Theorem. Let σ be the measure on R3 given by 〈σ, φ〉 =
∫
R2 φ(s, γ(|s|)) ds,

where γ satisfies (2.1) for some real number k ∈ (2, 6). Then for all f ∈ S(R3)

(a) ‖f̂ |S‖L8/(k+2),∞(σ) ≤ C‖f‖L4/3(R3);

(b) ‖f̂ |S‖Lq,p(σ) ≤ C‖f‖Lp(R3) for p ∈ (1, 4/3) and q = 2p′/(k + 2).
Moreover, (b) is sharp in the sense that it fails if the Lq,p norm on the left side

is replaced by an Lq,s norm for any s < p.

A simple homogeneity argument shows the relation q = 2p′/(k + 2) is necessary
in Theorem 2.3 (see e.g. [T, Sz]). (For δ > 0 take

fδ(x) = δe−π(δx1)2

δe−π(δx2)2

γ(δ)e−π(γ(δ)x3)2

.
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Then f̂δ(ξ) = e−π(ξ1/δ)
2

e−π(ξ2/δ)
2

e−π(ξ3/γ(δ))2

, which is essentially the character-

istic function of a box of dimensions δ × δ × γ(δ). Hence ‖f̂δ‖Lq,∞(σ) ≈ δ2/q and

‖fδ‖Lp(R3) ≈ δ(k+2)/(1−1/p). So if ‖f̂ |S‖Lq,∞(σ) ≤ C‖f‖Lp(R3) holds for f ∈ S(R3),

then δ2/q ≤ Cδ(k+2)(1−1/p) for all δ > 0. Therefore it follows that q = 2p′/(k + 2).
If the measure σ is replaced by a compactly supported measure, then it is only
necessary that q ≤ 2p′/(k + 2).)

Let P = [ 0,∞)× [0,∞) and assume γ satisfies (2.1). Define a function G : P ×
P → R3 by

G(s, t) = (s+ t, γ(|s|) + γ(|t|)).(2.4)

Then the measure gdσP defined by 〈gdσP , φ〉 =
∫
P
φ(s, γ(|s|))g(s)ds satisfies (see

[GS, p. 103])

〈gdσP ∗ gdσP , φ〉 =

∫
P

∫
P

φ((t, γ(|t|)) + (s, γ(|s|)))g(s)ds g(t)dt

=

∫
P×P

φ(G(s, t))g(s)g(t)dsdt.(2.5)

In Lemma 2.6 below we prove estimates on the mapping φ 7→ φ◦G, which therefore
imply estimates on gdσP ∗ gdσP . We first state this lemma, and then show how it
can be used to prove Theorem 2.3. The proof of Lemma 2.6 is then given in the
third section of the paper.

(2.6) Lemma. Let G be defined by (2.4), where γ satisfies (2.1) for some k ∈
[2,∞). Then

(a) ‖φ ◦G‖L1(P×P ) ≤ C‖φ‖L(k+2)/4,1(R3);

(b) ‖φ ◦G‖Lq,(k+2)q/4(P×P ) ≤ C‖φ‖L(k+2)q/4(R3) if 1 < q <∞.

Proof of Theorem 2.3. We first note that 2.3(b) follows from 2.3(a) and the trivial
L1–L∞ estimate by interpolation.

Also a straightforward generalization of calculations given by Sogge [So], applied
to the functions gδ(s) = χ[0,δ](|s|)|s|−2/p(log 1/|s|)1/q, for small δ > 0, implies the
sharpness results. We omit the details.

To prove 2.3(a) consider an operator T given by

Tg(ξ) =

∫
R2

e2πiξ·(s,γ(|s|))g(s) ds = (gdσ)̂(ξ),

where g ∈ L1(R2) and ξ ∈ R3. By duality 2.3(a) follows from the following estimate
for T :

‖Tg‖L4(R3) ≤ C‖g‖L8/(6−k),1(R2).(2.7)

Let σP be defined by 〈σP , φ〉 =
∫
P φ(s, γ(|s|)) ds, where P = [0,∞) × [0,∞) as

above. Observe that it suffices to prove (2.7) with T replaced by T̃ , where

T̃ g(ξ) =

∫
P

e2πiξ·(s,γ(|s|))g(s)ds = (gdσP )̂(ξ).

In order to prove the estimate for T̃ we may assume g is the characteristic function
of a Borel set E (see [SW, p. 195]). We have

‖T̃χE‖2L4(R3) = ‖(T̃χE)2‖L2(R3) = ‖(χEdσP ∗ χEdσP )̂‖L2(R3)

= ‖χEdσP ∗ χEdσP ‖L2(R3)
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by the Plancherel theorem. To estimate the last L2 norm we let it act on test
functions φ. Hölder’s inequality for Lorentz spaces (see [O]) and Lemma 2.6(b)
with q = 8/(k + 2) give

|〈χEdσP ∗ χEdσP , φ〉| =
∣∣∣∣ ∫
P×P

φ(G(s, t))χE(s)χE(t)dsdt

∣∣∣∣
≤ C‖φ ◦G‖L8/(k+2),∞(P×P )‖χE(s)χE(t)‖L8/(6−k),1(P×P )

≤ C‖φ ◦G‖L8/(k+2),2(P×P )|E|2(6−k)/8

≤ C‖φ‖L2(R3)‖χE‖2L8/(6−k)(P ).

Thus ‖χEdσP ∗ χEdσP ‖L2(R3) ≤ C‖χE‖2L8/(6−k)(P )
, and hence ‖T̃χE‖L4(R3) ≤

C‖χE‖L8/(6−k)(P ), which finishes the proof of (2.7).

§3. Proof of Lemma 2.6

We will deduce Lemma 2.6 from part (d) of the next lemma, which follows from
certain pointwise estimates (see (3.11) below) for the convolution σP ∗ σP .

Notation. Write x = (x′, z) with x′ = (x1, x2) and z = x3. For ξ, y ∈ R2 let
Fξ(y) = γ(|ξ + y|/2) + γ(|ξ − y|/2).

(3.1) Lemma. Assume that γ satisfies (2.1) and let P , G and σP be as above.
Then

(a) G(P × P ) =
{
x ∈ R3 : x′ ∈ P, 2γ(|x′|/2) ≤ z ≤ γ(|x′|)

}
;

(b) σP ∗ σP is absolutely continuous with respect to Lebesgue measure in R3;
(c) σP ∗ σP (x) = 0 if x 6∈ G(P × P ), and

σP ∗ σP (x) =
1

4

∫
Rx′∩F

−1
x′ (z)

|∇Fx′(y)|−1dS(y)(3.2)

if x lies in the interior of G(P × P );
(d) σP ∗ σP ∈ L(k+2)/(k−2),∞(R3) if k > 2;
(e) σP ∗ σP ∈ L∞(R3) if k = 2.

In (c) above dS denotes the arc length measure on the level curve F−1
x′ (z) =

{y : Fx′(y) = z} and the gradient is taken with respect to y. Let us assume Lemma
3.1 for the moment and prove Lemma 2.6.

Proof of Lemma 2.6. To prove 2.6(a) we may take φ to be a characteristic function
of a set E ⊂ R3 (see [SW, p. 195]). From (2.5) it follows that

‖χE ◦G‖L1(P×P ) =

∫
P×P

χE(G(s, t))dsdt = 〈σP ∗ σP , χE〉.

Hence, if k > 2, Hölder’s inequality and Lemma 3.1 give

‖χE ◦G‖L1(P×P ) = 〈σP ∗ σP , χE〉 ≤ C‖σP ∗ σP ‖L(k+2)/(k−2),∞‖χE‖L(k+2)/4,1

≤ C‖χE‖L(k+2)/4,1 .

This finishes the proof of 2.6(a).
Now applying the Marcinkiewicz interpolation theorem for Lorentz spaces to

2.6(a) and the estimate ‖φ ◦G‖L∞(P×P ) ≤ ‖φ‖L∞(Rn) gives 2.6(b).
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Proof of Lemma 3.1. We begin with a few observations concerning the geometry
of the level curves of the function Fξ. Fix a nonzero vector ξ = (ξ1, ξ2) and let
η = (−ξ2, ξ1). First we note that (2.1) implies that Fξ is a convex function. Hence
the level curves of Fξ bound convex domains. Next observe that these curves are
symmetric about the line Lξ which passes through the origin and ξ, and also about
the line Lη passing through the origin and η. (If y′ is the reflection of y through
Lξ, then |y′ + ξ| = |y + ξ| and |y′ − ξ| = |y − ξ|, while if y′′ is the reflection of y
through Lη, then |y′′ + ξ| = |y − ξ| and |y′′ − ξ| = |y + ξ|.) The third observation
is that these level curves are “elliptical” in shape.

To be more precise, we claim that
(i) For each vector ν 6= 0, the function r 7→ Fξ(rν) is a strictly increasing function

from [0,∞) onto [2γ(|ξ|/2),∞).
(ii) Fix z > 2γ(|ξ|/2) = Fξ(0). Let y− be the point on the level curve F−1

ξ (z)

which lies on the ray {rξ : r ≥ 0}, and y+ the point on this level curve which
lies on the ray {rη : r ≥ 0}. Then if y is any point on this level curve, we have
|y−| ≤ |y| ≤ |y+|.

To see (i) note that

∇Fξ(y) = (α− β)ξ + (α + β)y,(3.3)

where α = γ′(|ξ + y|/2)/(2|ξ + y|) and β = γ′(|ξ − y|/2)/(2|ξ − y|). Also, (2.1)
implies that (α−β)x′ ·y ≥ 0, since ξ ·y ≥ 0 if and only if |ξ+y| ≥ |ξ−y|. Therefore
∇Fξ(y) · y = (α− β)ξ · y + (α+ β)|y|2 > 0 if y 6= 0.

Part (ii) follows easily from the following inequality. For y ∈ R2 define ỹ =
|y|η/|η| and y∗ = |y|ξ/|ξ|. Then

Fξ(ỹ) ≤ Fξ(y) ≤ Fξ(y∗).(3.4)

To prove (3.4), define a function ψ(r) = γ (
√
r/2) for r ≥ 0. Since γ′(r)/r is

increasing by (2.1), ψ has an increasing derivative, and hence is convex. Therefore

2ψ(|ξ|2 + |y|2) ≤ ψ(|ξ|2 + |y|2 − 2ξ · y) + ψ(|ξ|2 + |y|2 + 2ξ · y)

≤ ψ(|ξ|2 + |y|2 − 2ξ · y∗) + ψ(|ξ|2 + |y|2 + 2ξ · y∗),

which is equivalent to (3.4).
To prove 3.1(a), first suppose that x = (x′, z) = (x1, x2, z) ∈ G(P × P ). Then

there exist points s, t ∈ P such that G(s, t) = (t+ s, γ(|t|) +γ(|s|)) = (x′, z), and so
x′ = t+ s and z = γ(|t|) + γ(|s|). If we put v = t− s for these s, t, then z = F (v),
where F ≡ Fx′ and v = (v1, v2) satisfies |vj | ≤ xj for j = 1, 2. Since x′ ∈ P , to
show that G(P ×P ) is a subset of the set on the right side of (a), it suffices to prove

2γ(|x′|/2) ≤ F (v) ≤ γ(|x′|)

for x′ 6= 0. However these inequalities follow easily from (i) above and (3.4), since
2γ(|x′|/2) = F (0) ≤ F (v) ≤ F (|v|x′/|x′|) ≤ F (|x′|x′/|x′|) = F (x′) = γ(|x′|).

Conversely, if x′ ∈ P and 2γ(|x′|/2) ≤ z ≤ γ(|x′|), then there exists b ∈ [0, 1] such
that F (bx′) = z, since F (0) = 2γ(|x′|/2) and F (x′) = γ(|x′|) and F is continuous.
Now G((1 − b)x′/2), (1 + b)x′/2) = (x′, F (bx′)) = (x′, z). This shows (x′, z) ∈
G(P × P ) and finishes the proof of (a).

Next we prove 3.1(b). We need to show that 〈σP ∗ σP , χE〉 = 0 for each set E
of Lebesgue measure zero in R3. The change of variables ξj = tj + sj, yj = tj − sj
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(j = 1, 2) gives

〈σP ∗ σP , χE〉 =

∫
P×P

χE(G(s, t)) ds dt

=
1

4

∫ ∞
−∞

∫ ∞
|y2|

∫ ∞
0

∫ ξ1

−ξ1
χE(ξ1, ξ2, Fξ(y1, y2)) dy1dξ1dξ2dy2.

For each fixed y2 and ξ, Fξ(y1, y2) is a strictly convex function of y1. Hence the
change of variables y1 7→ u given by u = Fξ(y1, y2) shows that the triple integral in
(y1, ξ1, ξ2) is zero (for each y2), since |E| = 0.

The first assertion in 3.1(c) is obvious because of (a) and (2.5). To prove (3.2)
note that, in view of the absolute continuity of σP ∗ σP just established, it may be
calculated by the relation

σP ∗ σP (x) = lim
a↓0

1

|Qa|
〈σP ∗ σP , χQa〉 = lim

a↓0

1

|Qa|

∫
P×P

χQa(G(s, t))dsdt a.e.

where Qa = Qa(x) = [x1, x1 + a]× [x2, x2 + a]× [z, z + a].
By the change of variables ξj = tj + sj , yj = tj − sj (j = 1, 2),∫

P×P
χQa(G(s, t)) ds dt =

1

4

∫
P

∫
Rξ

χQa(ξ, Fξ(y)) dy dξ

=
1

4

∫
Sx,a

∫
Rξ∩{y:z≤Fξ(y)≤z+a}

dy dξ,

where Rξ = {y ∈ R2 : |yj| ≤ ξj , j = 1, 2} and Sx,a = {ξ ∈ R2 : xj ≤ ξj ≤
xj + a, j = 1, 2}. By applying the coarea formula (see [Fe, p. 249]) to the y-
integral, for example, and then the mean value theorem for integrals, we see that

1

|Qa|

∫
P×P

χQa(G(s, t)) ds dt =
1

4a3

∫
Sx,a

∫ z+a

z

∫
Rξ∩F−1

ξ (u)

dS(y)

|∇Fξ(y)|
du dξ

=
1

4

∫
Rξ0∩F

−1
ξ0

(u0)

dS(y)

|∇Fξ0(y)|

for some ξ0 ∈ Sx,a and u0 ∈ [z, z+ a]. Here dS = dSξ,u denotes arc length measure

on the level curve F−1
ξ (u), and ∇ is the gradient with respect to y. Hence taking

the limit as a ↓ 0 gives (3.2). Thus we have

σP ∗ σP (x) ≤ 1

4

∫
F−1(z)

dS ·max{|∇F (y)|−1 : F (y) = z}.(3.5)

By (a), (b) and symmetry, to prove (d) and (e) it is enough to estimate σP ∗ σP (x)
at points x = (x′, z), where 2γ(|x′|/2) < z < γ(|x′|) and 0 < x1 ≤ x2.

We will first prove an estimate for
∫
F−1(z)

dS. If 2γ(|x′|/2) < z < γ(|x′|), then

(i), (ii), (3.4) (with ξ = x′) and the facts that F (0) = 2γ(|x′|/2), F (x′) = γ(|x′|)
imply that there exists a unique λ ∈ (0, 1) such that y− = λx′ satisfies F (y−) = z
and |y−| = min{|y| : F (y) = z}. It also follows from (ii) that the maximum value
of |y| on the curve F (y) = z occurs at a point y+ which satisfies x′ · y+ = 0. From

the relation z = F (y+) = 2γ(
√
|x′|2 + |y+|2/2) we get |y+|2 = 4[γ−1(z/2)]2 − |x′|2.

Since F−1(z) is a curve which bounds a convex domain and F−1(z) is contained in
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the annulus {y ∈ R2 : |y−| ≤ |y| ≤ |y+|}, we conclude that∫
F−1(z)

dS ≤ 2π|y+|.(3.6)

Since 2γ(|x′|/2) < z < γ(|x′|), (2.2) implies that z ≈ |x′|k and γ−1(z/2) ≈ |x′|. By
the mean value theorem

|y+|2 = 4[γ−1(z/2) + |x′|/2][γ−1(z/2)− γ−1(γ(|x′|/2))]

= 4[γ−1(z/2) + |x′|/2][z/2− γ(|x′|/2)]/γ′(γ−1(ζ))

for some ζ between γ(|x′|/2) and z/2. Since ζ ≈ |x′|k, we have γ′(γ−1(ζ)) ≈ |x′|k−1

by (2.2), and so

|y+| ≈ |x′|1−k/2[z − 2γ(|x′|/2)]1/2.

Hence ∫
F−1(z)

dS ≤ C|x′|1−k/2[z − 2γ(|x′|/2)]1/2.(3.7)

Next we will prove

max{|∇F (y)|−1 : F (y) = z} ≤ C|x′|1−k/2[z − 2γ(|x′|/2)]−1/2.(3.8)

From (3.3) we have

|∇F (y)|2 = (α− β)2|x′|2 + 2(α+ β)(α − β)x′ · y + (α+ β)2|y|2,
and so we have |∇F (y)| ≥ (α+β)|y|, since (α−β)x′ ·y ≥ 0. By the above argument
following (3.5), if F (y) = z then

|∇F (y)| ≥ (α + β) min{|y| : F (y) = z} = (α+ β)|y−|,(3.9)

where y− = λx′ is as above. We will now obtain a lower bound for |y−|. Observe
that by the mean value theorem

z − 2γ(|x′|/2) = F (y−)− 2γ(|x′|/2) = F (λx′)− 2γ(|x′|/2)

= γ((1 + λ)|x′|/2)− γ(|x′|/2) + γ((1− λ)|x′|/2)− γ(|x′|/2)

= λ|x′|γ′(w1)/2− λ|x′|γ′(w2)/2

for some w1, w2 with |x′|/2 < w1 < (1 + λ)|x′|/2 and (1 − λ)|x′|/2 < w2 < |x′|/2.
Therefore z − 2γ(|x′|/2) = [γ′(w1) − γ′(w2)]λ|x′|/2 = (w1 − w2)γ′′(w3)λ|x′|/2 for
some w3 with w2 < w3 < w1. It then follows from (2.1) that z − 2γ(|x′|/2) .
λ|x′| · |x′|k−2 · λ|x′| = λ2|x′|k. Thus λ ≥ C|x′|−k/2[z − 2γ(|x′|/2)]1/2, and hence

|y−| = λ|x′| ≥ C|x′|1−k/2[z − 2γ(|x′|/2)]1/2.(3.10)

(This together with the estimate for |y+| shows that

|y−| ≈ |y+| ≈ |x′|1−k/2[z − 2γ(|x′|/2)]1/2.

That is, the eccentricity of the level curve F−1
x′ (z) stays bounded as the point

x = (x′, z) varies.) Now (2.2) implies that

α+ β = γ′(|x′ + y|/2)/(2|x′ + y|) + γ′(|x′ − y|/2)/(2|x′ − y|)
≈ |x′ + y|k−2 + |x′ − y|k−2 ≥ |x2 + y2|k−2 + |x2 − y2|k−2 ≥ xk−2

2 ≈ |x′|k−2.

From this estimate, (3.9), and (3.10), we conclude that if F (y) = z, then |∇F (y)| ≥
C|x′|k/2−1[z − 2γ(|x′|/2)]1/2. This proves (3.8).
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Thus from (3.5), (3.7), and (3.8) we conclude that if 0 < x1 ≤ x2, then

σP ∗ σP (x) ≤ C|x′|2−k ≤ Cx2−k
2 if 2γ(|x′|/2) < z < γ(|x′|).(3.11)

From this estimate, 3.1(e) is obvious. When k > 2 we have

|{x ∈ R3 : σP ∗ σP (x) > ε}| ≤ C
∫ Cε1/(2−k)

0

∫ x2

0

∫ γ(|x′|)

2γ(|x′|/2)

dzdx1dx2

≤ Cε−(k+2)/(k−2)

for ε > 0. This yields 3.1(d).

Finally we would like to note that under the same hypotheses (2.1) for γ, an
n-dimensional version (n ≥ 3) of Lemma 3.1 still holds with a similar proof. The
estimate (3.11) should then be replaced by

σP ∗ σP (x) ≤ C|x′|n−1−k if 2γ(|x′|/2) < xn < γ(|x′|),(3.11′)

where x′ = (x1, . . . , xn−1). The analog of Lemma 3.1(d) becomes

σP ∗ σP ∈ L(k+n−1)/(k−n+1),∞(Rn) if k > n− 1.
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