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SMOOTH EXHAUSTION FUNCTIONS IN CONVEX DOMAINS

ZBIGNIEW B LOCKI

(Communicated by Jeffrey B. Rauch)

Abstract. We show that in every bounded convex domain in Rn there exists
a smooth convex exhaustion function ψ such that the product of all eigenvalues
of the matrix (∂2ψ/∂xj∂xk) is ≥ 1. Moreover, if the domain is strictly convex,
then ψ can be chosen so that every eigenvalue is ≥ 1.

Introduction

Let D be a bounded domain in Rn. A function ψ we call a convex exhaustion
in D if ψ is convex, negative in D and limx→∂D ψ(x) = 0. One can show that D
is convex if and only if it admits a convex exhaustion (see e.g. [Hör, pp. 57-59]).
Perhaps the simplest example of an exhaustion in a bounded convex domain D
containing the origin is pD − 1, where pD is the Minkowski functional of D. For a
larger class of exhaustions see Theorem 4.1.

The goal of this paper is to show the existence of smooth (C∞) convex exhaus-
tions with additional properties in arbitrary convex and strictly convex domains.
Recall that a domain is called strictly convex if it is convex and its boundary con-
tains no line segment. Our main results are the following two theorems.

Theorem A. If D is a convex, bounded domain in Rn then there exists a smooth
exhaustion ψ in D such that

Mψ := det

(
∂2ψ

∂xj∂xk

)
≥ 1

(that is, the product of all eigenvalues of the matrix (∂2ψ/∂xj∂xk) is ≥ 1).

Theorem B. A bounded domain D in Rn is strictly convex if and only if there
exists a smooth convex exhaustion ψ in D such that

n∑
j,k=1

∂2ψ

∂xj∂xk
yjyk ≥ |y|2, y = (y1, . . . , yn) ∈ Rn

(that is, every eigenvalue of the matrix (∂2ψ/∂xj∂xk) is ≥ 1).

Note that nothing about the regularity of the domains is assumed.
The main step in proving Theorems A and B is global approximation of strictly

convex functions. We do it in section 1 in a more general context, using the termi-
nology of sheaves. The reason for it is that we are going to work in different classes
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of convex functions and we want to have good approximation by smooth elements
in every one of them. Since the methods are similar to those from [Rich] where
the case of plurisubharmonic functions was considered, we introduce a notion of a
Richberg sheaf.

Having the results of section 1, it is not difficult to prove Theorem B, since
appropriate will then be the sheaf of all strictly convex functions. The proof of
Theorem A requires more care, for we shall make use of the theory of the Monge-
Ampère operator M . Without it we can only get a smooth strictly convex exhaus-
tion in Theorem A (that is, Mψ > 0 instead of Mψ ≥ 1).

Results corresponding to Theorems A and B in the complex case were obtained
in [KR], [Sib], and [B lo].

1. Global approximation, Richberg sheaves

Let u be a continuous function in an open subset Ω of Rn. Then u can locally
be approximated by its regularizations

uδ(x) := (u ∗ ρδ)(x) =

∫
B

u(x− δy)ρ(y)dλ(y),

where λ is the Lebesgue measure, B the unit ball in Rn, δ > 0, while ρ ∈ C∞0 (Rn) is
nonnegative, supp ρ = B,

∫
B ρdλ = 1 and ρδ(y) := δ−nρ(y/δ). Then uδ ∈ C∞(Ωδ),

where Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ}, and uδ tends locally uniformly to u as δ ↓ 0.
More generally, we shall consider functions of the following form:

uθ(x) := uθ(x)(x) =

∫
B

u(x− θ(x)y)ρ(y)dλ(y), y ∈ Ωδ,

where θ ∈ C∞(Ω), 0 ≤ θ ≤ δ. Observe that if u is smooth on an open D ⊂ Ω then
so is uδ on Dδ, for we can then differentiate under the sign of integration.

Definition. A subsheaf S of the sheaf of continuous functions over Rn is called a
Richberg sheaf if the following conditions are satisfied.
(1.1) For any u ∈ S(Ω), ϕ ∈ C∞0 (Ω) and c ∈ R there exists ε0 > 0 such that
u+ εϕ+ c ∈ S(Ω) for ε ∈ [0, ε0].
(1.2) If u, v ∈ S(Ω) then max{u, v} ∈ S(Ω).
(1.3) If Ω′ b Ω, θ ∈ C∞(Ω), 0 ≤ θ ≤ 1 and u ∈ S(Ω) is smooth on a neighborhood

of {θ < 1} ∩ Ω′, then uδθ ∈ S ∩ C∞(Ω′) for δ > 0 small enough.
The condition (1.3) means essentially that a Richberg sheaf is closed under the

operation of regularization in the generalized sense. It implies in particular
(1.3)’ If Ω′ b Ω and u ∈ S(Ω), then uδ ∈ S ∩ C∞(Ω′) for δ small enough.
(We assume that the empty set is a neighborhood of itself.)

We want to prove the following:

Theorem 1.1. Suppose S is a Richberg sheaf. Let Ω be open in Rn and let ε > 0
be a continuous function on Ω. Then for u ∈ S(Ω) one can find v ∈ S ∩ C∞(Ω)
such that u ≤ v ≤ u+ ε.

The proof of Theorem 1.1 relies on the following fact.

Lemma 1.2. Let u ∈ S(Ω), where S is a Richberg sheaf and Ω an open subset of
Rn. Assume that u is smooth on a neighborhood of D, where D b Ω is open. Let V
and W be open such that V bW b Ω, and let ε > 0 (constant). Then there exists
v ∈ S(Ω) such that
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i) v = u on Ω \W ,
ii) u ≤ v ≤ u+ ε on Ω,
iii) v is smooth on a neighborhood of D ∪ V .

Lemma 1.2 easily implies Theorem 1.1:

Proof of Theorem 1.1. Suppose Ωk ↑ Ω where the sets Ωk b Ωk+1 b Ω, k ≥ 0, are
open, Ω0 = ∅. For k ≥ 1 set Wk := Ωk+1 \ Ωk−2 (W1 := Ω2) and let Vk be open
such that Ωk \Ωk−1 b Vk bWk. Let γk > 0; it will be specified later. From Lemma
1.2 we can get a sequence {uk} ⊂ S(Ω) such that u0 = u and

uk = uk−1 on Ω \Wk,

uk−1 ≤ uk ≤ uk−1 + γk on Ω,

uk is smooth in a neighborhood of
k⋃
j=1

V j

(D =
⋃k−1
j=1 Vj). The sequence {uk} is locally constant for k big enough; thus we

may define v := limuk ∈ S ∩C∞(Ω). Then u ≤ v on Ω, and for x ∈ Ω \Ωk one has

v(x) = u(x) +
∞∑
j=k

(uj(x)− uj−1(x)) ≤ u(x) +
∞∑
j=k

γj .

Now, if γk are such that
∞∑
j=k

γj ≤ min
Ωk+1

ε,

then u ≤ v ≤ u+ ε on Ω.

Proof of Lemma 1.2. Let η ∈ C∞0 (Ω) be such that 0 ≤ η ≤ 1 on Ω, supp η ⊂ W ,
and η = 1 on a neighborhood of V .

First assume that D is empty. From (1.1) it follows that there exists c ∈ (0, ε)
such that u + cη ∈ S(Ω). Regularization of u + cη and (1.3) give a function

ψ̃ ∈ S ∩ C∞(W ) with |ψ̃ − u− cη| ≤ c
2 on W . Define

v :=

{
max{u, ψ̃ − c

2} on W,

u on Ω \W.
Then v = u if η = 0, and v = ψ− c

2 if η = 1. Hence by (1.2), v ∈ S(Ω), v is smooth

on a neighborhood of V , and u ≤ v ≤ u+ c ≤ u+ ε on Ω.
Now let D be arbitrary. Choose open sets Gj , Dj and θj ∈ C∞(Ω), j = 1, 2, so

that 0 ≤ θj ≤ 1, Gj = {θj = 0}, Dj = {θj < 1}, D b G1 b D1 b G2 b D2 b Ω

and u is smooth on a neighborhood of D2. By (1.1) we can find c ∈ (0, ε) such that
ũ := u+ cη ∈ S(Ω) and

ũ− c

2
θ1 ∈ S(Ω).(1.4)

We claim that there is ψ̃ ∈ S ∩ C∞(W ) such that

ψ̃ = ũ on a neighborhood of W ∩D1,(1.5)

|ψ̃ − ũ| ≤ c

2
on W.(1.6)
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Indeed, for δ > 0 small enough we have |ũδ − ũ| ≤ c
2 on W . Thus, for x ∈ W

|ũδθ2(x) − ũ(x)| = |ũδθ2(x)(x) − ũ(x)| ≤ c
2 . Therefore, by (1.3) and because θ2 = 0

on a neighborhood of D1, the function ψ̃ := ũδθ2 has the required properties if
δ > 0 is sufficiently small.

Now put ψ := ψ̃ − c
2θ1 on W . We claim that

ψ ∈ S ∩ C∞(W ),(1.7)

ψ ≤ ũ.(1.8)

Indeed, by (1.6), on W \D1 we have ψ = ψ̃ − c
2 ≤ ũ, and by (1.5) ψ = ũ− c

2θ1 on

a neighborhood of W ∩D1. Thus (1.8) follows, and from (1.4) we also get (1.7).
Define

v :=

{
max{u, ψ} on W,

u on Ω \W.
From (1.8) we get that v = u if η = 0; thus from (1.2) and (1.7) it follows that
v ∈ S(Ω). Obviously i) is fulfilled, and (1.8) implies that u ≤ v ≤ u + c; hence ii)
is also satisfied.

It remains to show iii). If η = 1 then from (1.6) we obtain ψ ≥ ũ− c
2 −

c
2θ1 ≥ u;

hence by (1.7) v is smooth on a neighbborhood of V . We claim that v = u + cη
on G1; this will complete the proof. It is obvious outside W (since η = 0 there)

and on W ∩ G1, by (1.5), we have ψ = ψ̃ = u + cη. The proof of the lemma is
complete.

Proof of Theorem B

We shall say that u is strictly convex in Ω if for every test function ϕ ∈ C∞0 (Ω)
the function u + εϕ is convex in Ω for ε > 0 small enough. This is equivalent to
saying that locally one can find ε > 0 such that u(x) − ε|x|2 is convex. If u is
smooth then it is strictly convex if and only if the matrix (∂2u/∂xj∂xk) is positive
definite.

Results of the previous section give good approximation in the class of strictly
convex functions:

Theorem 2.1. Let Ω and ε be as in Theorem 1.1. Then for every strictly convex
u in Ω one can find a smooth, strictly convex v in Ω such that u ≤ v ≤ u+ ε. In
particular, one can choose v so that limx→∂Ω(u(x)− v(x)) = 0.

Proof. In view of Theorem 1.1 it is enough to prove the following

Proposition 2.2. The sheaf of strictly convex functions is a Richberg sheaf.

Proof. It is enough to show (1.3). Let Ω′, Ω, θ and u be as in (1.3). We can find

an open D b Ω, a neighborhood of {θ < 1} ∩Ω′, such that for δ > 0 small enough
uδθ = uδ on a neighborhood of Ω′ \D and uδθ is smooth on D. We have

∂2u(x− δθ(x)y)

∂xj∂xk
(x0) =

∂2u

∂xj∂xk
(x0 − δθ(x0)y) + δγjk(x0, y, δ),

where γjk is uniformly bounded for x0 ∈ D, y ∈ B and δ ≤ δ0. This gives
uniform convergence in D of partial derivatives ∂2uδθ/∂xj∂xk −→ ∂2u/∂xj∂xk as
δ ↓ 0. Thus uδθ is strictly convex on Ω′ for sufficiently small δ, and the proposition
follows.
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We are now in position to prove Theorem B.

Proof of Theorem B. Assume first that there is a smooth exhaustion ψ such that
every eigenvalue of the matrix (∂2ψ/∂xj∂xk) is ≥ 1. This means that every di-
rectional second derivative of ψ is ≥ 1. Suppose that the boundary of D contains
a line segment. Then approaching it by line segments lying in the interior we can
easily get a contradiction.

Now let D be strictly convex. Let f be the restriction to ∂D of the function
−2|x|2. We want to use Perron’s method to extend f to a function convex on D and
continuous on D. By u denote the supremum of all v convex on D and continuous
on D with v ≤ f on ∂D. u is of course convex on D and continuous on D, u ≤ f
on ∂D, and we claim that u = f on ∂D. Take x0 ∈ ∂D and ε > 0. We may assume
that x0 = 0 and D lies in the half-space {xn < 0}. Then for K big enough we have
Kxn ≤ f(x) + ε on ∂D, thus Kxn − ε ≤ u(x). In particular u(0) ≥ −ε, which
proves the claim. Note that here xn is just a typical barrier function.

The function ũ(x) := u(x) + |x|2 is strictly convex; thus by Theorem 2.1 we can
find a smooth, strictly convex v with v(x) = u(x) = −|x|2 on ∂D. Now it is enough
to set ψ(x) := v(x) + |x|2.

We can also prove a weaker version of Theorem A.

Theorem 2.3. In a bounded, convex domain there exists a smooth, strictly convex
exhaustion.

Proof. Let D be convex and bounded and let u be any convex exhaustion in D. Put
v(x) := |x|2−K, where K is so big that v ≤ 0 in D. We claim that ũ := −2(uv)1/2

is a strictly convex exhaustion. Indeed, in the case of smooth functions of one
variable we have

(−2(uv)1/2)xx = (uv)−1/2(−uvxx − vuxx) +
1

2
(uv)−3/2(uvx − vux)2 ≥ (u/v)1/2vxx;

thus in the general case
n∑

j,k=1

∂2(ũ− εv)

∂xj∂xk
yjyk ≥

(
(u/v)1/2 − ε

)
|y|2, y ∈ Rn, ε > 0.

This implies that ũ is strictly convex. Now it is enough to apply Theorem 2.1 to
complete the proof.

3. Preliminaries from the theory of the Monge-Ampère operator

In this section we list properties of the Monge-Ampère operator which we shall
use in section 4. A good reference is [RT]; see also [GT].

When u is smooth, the Monge-Ampère operator takes the form

Mu := det

(
∂2u

∂xj∂xk

)
.

If u is convex then Mu can be defined by means of a gradient image as a nonnegative
Borel measure, so that the following holds.

Theorem 3.1. If {uj} is a sequence of convex functions converging uniformly to
u, then Muj tends weakly to Mu.
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(Note that Theorem 3.1 can be regarded as an alternative definition of Mu.)
The next property is sometimes called the comparison principle.

Theorem 3.2. Let D be a bounded domain in Rn and let u and v be convex on
D and continuous on D. Suppose that u ≤ v on ∂D and Mu ≥ Mv in D. Then
u ≤ v in D.

The next result solves the Dirichlet problem for the Monge-Ampère operator.

Theorem 3.3. Let D be a bounded, strictly convex domain in Rn, and suppose
that µ is a nonnegative Borel measure on D with µ(D) < +∞. Then for every
continuous function g on ∂D there is a unique convex u on D, continuous on D,
such that Mu = µ in D and u = g on ∂D.

We shall also need the following fact.

Lemma 3.4. If D is a convex domain in Rn, then for every convex, continuous u
on D with u ≥ 0 on ∂D the following estimate holds:

(−u(x))n ≤ cn(diamD)n−1dist(x, ∂D)Mu(D), x ∈ D,
where cn is a constant depending only on n.

The following simple lemma makes it possible to express the Monge-Ampère
operator (which is nonlinear) in terms of linear partial differential operators.

Lemma 3.5 [Gav]. By A denote the set of all symmetric, positive definite matrices
a with det a = 1. Then for any symmetric, positive semi-definite matrix b one has

(det b)1/n =
1

n
inf
a∈A

trace(ab).

We will also need some local properties of the Monge-Ampère operator.

Proposition 3.6. For convex functions u and v one has
i) M(u+ v) ≥Mu+Mv,
ii) M max{u, v} ≥ 1{u>v}Mu+ 1{u≤v}Mv,

where 1A stands for the characteristic function of a set A.

Proof. i) From Lemma 3.5 it follows that if matrices b1, b2 are symmetric and
positive semi-definite, then

(det(b1 + b2))
1/n ≥ (det b1)

1/n
+ (det b2)

1/n

which implies that det(b1 + b2) ≥ det b1 + det b2. Therefore we obtain i) for smooth
u, v, and it is enough to apply Theorem 3.1 to get it for arbitrary u and v.

ii) It is enough to show that for compact subsets K of the set {u = v} one has
M max{u, v}(K) ≥Mv(K). For δ > 0 put vδ := max{u, v+ δ}; then vδ = v+ δ on
a neighborhood of K and uδ decreases to max{u, v}. From Theorem 3.1 we get

Mv(K) = lim sup
δ→0

Mvδ(K) ≤M max{u, v}(K).

Finally, the following result gives good regularity of solutions of the Dirichlet
problem.

Theorem 3.7 [CNS]. Assume that D is a smooth, bounded, strictly convex domain
in Rn. Take µ ∈ C∞(D) with µ > 0, and g ∈ C∞(∂D). Then the solution u given
by Theorem 3.3 is smooth on D.
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4. Proof of Theorem A

First we shall prove the following:

Theorem 4.1. Let D be bounded, open and convex in Rn, and let µ be a nonneg-
ative Borel measure on D with µ(D) < +∞. Then there exists a unique convex
exhaustion u in D with Mu = µ.

Proof. The uniqueness follows immidiately from the comparison principle (Theorem
3.2). Assume first that µ is a continuous, compactly supported function in D. Let
ψ be a smooth, strictly convex exhaustion given by Theorem 2.3. Since µ has
compact support and ψ is strictly convex, we may assume that Mψ ≥ µ. Take
strictly convex domains Dj ↑ D. By Theorem 3.3 there exist convex exhaustions
uj in Dj such that Muj = µ in Dj . From the comparison principle it follows that
ψ ≤ uj+1 ≤ uj in Dj . Thus the sequence {uj} decreases to a convex exhaustion u
in D, and from Theorem 3.1 we obtain Mu = µ.

Now let µ be arbitrary. We can find a sequence {µj} of nonnegative continu-
ous functions with compact supports in D, converging weakly to µ and such that
µj(D) ≤ A < +∞. From the previous part we can get convex exhaustions uj in
D with Muj = µj . By Lemma 3.4 the sequence {uj} is uniformly bounded on D.
We can thus find a subsequence {ujk} converging locally uniformly to some convex
u in D, and, again by Lemma 3.4, u is an exhaustion. Now it is enough to apply
Theorem 3.1 to complete the proof.

We will use the above theorem with µ ≡ 1. Note that if D contains the origin
and µ is the Dirac measure, then the exhaustion given by Theorem 4.1 is precisely
pD − 1, where pD is the Minkowski functional of D.

Now we want to define a Richberg sheaf appropriate for Theorem A. First we
prove one more local property of the Monge-Ampère operator.

Theorem 4.2. Let u be a convex function with Mu ≥ 1. Then for every δ > 0
Muδ ≥ 1, where uδ := u ∗ ρδ is the regularization of u.

Proof. From Lemma 3.5 it follows that for smooth, convex v we have

(Mv)1/n = inf
a∈A

∆av,(4.1)

where

∆a :=
1

n

n∑
j,k=1

ajk
∂2

∂xj∂xk
.

We claim that to prove the theorem it is enough to show that ∆au ≥ 1 for a ∈ A.
Indeed, we would then have ∆auδ = (∆au) ∗ ρδ ≥ 1 and, by (4.1), Muδ ≥ 1, which
proves the claim.

For δ > 0 put µδ := Mu∗ρδ. Then µδ ≥ 1, and we may assume that u and µδ are
defined in a neighborhood of B, where B is a euclidean ball. Let f δ be a sequence
of smooth functions on ∂B, converging uniformly to u there. From Theorem 3.7 we
obtain a smooth, convex uδ on B such that Muδ = µδ in B and uδ = f δ on ∂B.
From Proposition 3.6, part i), and Theorem 3.2 it follows that

ũ+ vδ ≤ uδ ≤ ũ− vδ,(4.2)

where ũ and vδ are convex and continuous on B with Mũ = 0, ũ|∂B = f and
Mvδ = µδ, v

δ|∂B = 0. By Lemma 3.4 the sequence {uδ} is uniformly bounded
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on B; thus there exists a subsequence {uδj} converging locally uniformly there.
Moreover, (4.2) and Lemma 3.4 imply that {uδj} is uniformly convergent on B.
From Theorem 3.2 it follows that uδj converges to u. Since uδj ∈ C∞(B), from
(4.1) we get ∆au

δj ≥ 1. Now it is enough to observe that ∆au
δj tends weakly to

∆au; thus ∆au ≥ 1 and the theorem follows.

If Ω is open in Rn, by F(Ω) denote the set of all strictly convex u in Ω with
Mu > 1 (that is, for every Ω′ b Ω there exists c > 1 such that Mu ≥ c in Ω′).

Proposition 4.3. F defined above is a Richberg sheaf.

Proof. The definition of F is local, thus F is a sheaf. Take u ∈ F(Ω), ϕ ∈ C∞0 (Ω)
and Ω′ b Ω. We may assume that suppϕ ⊂ Ω′. If Mu ≥ c > b > 1 in Ω′, then by
Proposition 3.6, part i), for ε > 0 small enough we have

M(u+ εϕ) ≥M(b−1/nu) ≥ c/b > 1,

because (1− b−1/n)u is strictly convex. This implies that F satisfies (1.1). Propo-
sition 3.6, part ii), implies that F also satisfies (1.2).

From Theorem 4.2 it follows that F satisfies (1.3)’. Let Ω′, Ω, θ and u be as in
(1.3). If D is as in the proof of Proposition 2.2, in the same way as there we can
get uniform convergence of the partial derivatives ∂2uδθ/∂xj∂xk −→ ∂2u/∂xj∂xk
as δ ↓ 0 on D, whereas on a neighborhood of Ω′ \ D we have uδθ = uδ for δ > 0
small enough. The proof of the proposition is complete.

Proof of Theorem A. In view of Proposition 4.3 and Theorem 1.1 it is enough to
show the existence of a strictly convex exhaustion u with Mu > 1. But this is
obvious, thanks to Theorems 2.3, 4.2 and Proposition 3.6, part i).
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