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EVERY NONREFLEXIVE SUBSPACE OF L1[0, 1]

FAILS THE FIXED POINT PROPERTY

P. N. DOWLING AND C. J. LENNARD

(Communicated by Dale Alspach)

Abstract. The main result of this paper is that every nonreflexive subspace
Y of L1[0, 1] fails the fixed point property for closed, bounded, convex subsets
C of Y and nonexpansive (or contractive) mappings on C. Combined with a
theorem of Maurey we get that for subspaces Y of L1[0, 1], Y is reflexive if and
only if Y has the fixed point property. For general Banach spaces the question
as to whether reflexivity implies the fixed point property and the converse
question are both still open.

Introduction

We introduce the notion of an asymptotically isometric copy of `1 and use it
to show that every nonreflexive subspace of L1[0, 1] fails the fixed point property
for nonexpansive mappings, proving the converse of a theorem of Maurey [M]. In
particular, the Hardy space H1 on the unit circle must fail to have the fixed point
property, which contrasts with Maurey’s result in [M] that H1 has the weak (and
weak-star) fixed point property.

We only deal with the failure of the fixed point property (FPP) in this paper.
The failure of the weak FPP for the Banach space (L1[0, 1], ‖·‖1) was discovered by
Alspach [A]. This is still (apart from its superspaces) the only Banach space known
to fail the weak FPP. On the other hand the ultrapower techniques of Maurey [M]
have been extended to prove the weak FPP in many spaces. Examples of such spaces
are: (c0, ‖·‖∞) ([M]), the Tsirelson space of Figiel and Johnson (Elton et al. [ELOS])

and every Banach space with an unconditional basis, constant < (
√

33 − 3)/2,
([Lin]).
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0. Preliminaries

Recall that `1 is the Banach space of all scalar sequences x = (xn)∞n=1 for which
‖x‖1 :=

∑∞
n=1 |xn| <∞. L1[0, 1] is the usual space of Lebesgue integrable functions

(where almost everywhere equal functions are identified), with its usual norm.
Let (X, ‖ · ‖X) be a Banach space. We say that (X, ‖ · ‖X) has the fixed point

property (FPP) if given any non-empty, closed, bounded and convex subset C of X ,
every nonexpansive mapping T : C → C has a fixed point. Here T is nonexpansive
if ‖Tx − Ty‖X ≤ ‖x − y‖X for all x, y ∈ C. Moreover, T is a contraction if
‖Tx − Ty‖X < ‖x − y‖X for every x, y ∈ C with x 6= y. If X is a dual space,
isometrically isomorphic to Y ∗ for some Banach space Y , then (X, ‖ · ‖X) has the
weak-star fixed point property (with respect to Y ) if given a non-empty, weak-star
compact, convex set C in X , every nonexpansive mapping on C has a fixed point.
The weak fixed point property is defined analogously.

1. All nonreflexive subspaces of L1[0, 1] fail the FPP

1.1 Definition. We say that a Banach space (X, ‖·‖X) is asymptotically isometric
to `1 if it has a normalized Schauder basis (xn)∞n=1 such that for some sequence
(λn)∞n=1 in (0,∞) increasing to 1, we have that

∞∑
n=1

λn |tn| ≤
∥∥∥∥∥
∞∑
n=1

tn xn

∥∥∥∥∥
X

(♠)

for all x =
∑∞
n=1 tn xn ∈ X .

Note that whenever (X, ‖·‖X) contains a normalized sequence (xn)∞n=1 satisfying
(♠), then the closed linear span of (xn)∞n=1 is an asymptotically isometric copy of
`1.

1.2 Theorem. Let (Y, ‖ · ‖Y ) be a Banach space containing an asymptotically iso-
metric copy of `1. Then (Y, ‖ · ‖Y ) fails the fixed point property for closed, bounded,
convex sets in Y and nonexpansive (or contractive) maps on them.

Proof. Let (xn)∞n=1 in Y and (λn)∞n=1 satisfy (♠) above. Now fix a sequence (µn)∞n=1

satisfying µn > µn+1 for all n ∈ N, with µn →
n

some real number r > 0. Each

µn+1/µn ∈ (0, 1), so that by passing to corresponding subsequences of (xn)∞n=1 and
(λn)∞n=1 (if necessary), we may ensure that

λn >
µn+1

µn
, for all n ∈ N .

Now define en := µn xn, for all n ∈N, and let

K :=

{∑
n∈N

αn en : each αn ≥ 0 and
∑
n∈N

αn = 1

}
.

Clearly, K is closed and convex in Y . K is bounded since µn →
n
r ∈ (0,∞). Define

T : K → K to be the right shift map; i.e.

T

(∑
n∈N

αn en

)
:=
∑
n∈N

αn en+1 .
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Of course, T is fixed point free on K. Finally, we show that T is contractive on K.
Fix z :=

∑
n∈N αn en and w :=

∑
n∈N βn en in K, with z 6= w. Then,

‖Tz − Tw‖Y =

∥∥∥∥∥∑
n∈N

(αn − βn) en+1

∥∥∥∥∥
Y

≤
∑
n∈N

|αn − βn| ‖en+1‖Y

=
∑
n∈N

|αn − βn| µn+1 <
∑
n∈N

|αn − βn| λn µn

≤
∥∥∥∥∥∑
n∈N

(αn − βn) µn xn

∥∥∥∥∥
Y

= ‖z − w‖Y .

Immediately we have the following corollary.

1.3 Corollary. Let (X, ‖ · ‖X) be a Banach space and Y be a subspace of X such
that there exists a sequence (vn)∞n=1 in Y , a sequence (un)∞n=1 in X and a null
sequence (γn)∞n=1 in (0,∞) with the following properties.∥∥∥∥∥

N∑
n=1

tnun

∥∥∥∥∥
X

=
N∑
n=1

|tn| , for all scalar sequences t1, . . . , tN and N ∈N .(i)

‖un − vn‖X < γn , for all n ∈ N .(ii)

Then (Y, ‖ · ‖X) fails the fixed point property for closed, bounded, convex sets in Y
and nonexpansive (or contractive) mappings on them.

Proof. Without loss of generality, each γn < 1 and (vn)∞n=1 is normalized. Then
(vn)∞n=1 spans an asymptotically isometric copy of `1 in (Y, ‖ · ‖X), with the λn’s
in inequality (♠) above given by λn := 1− γn, for all n ∈ N.

1.4 Theorem. Every nonreflexive subspace Y of L1[0, 1], with its usual norm, fails
the fixed point property for closed, bounded, convex sets in Y and nonexpansive (or
contractive) mappings on them. In particular, this is true for Y := H1(T), the
usual Hardy space on the unit circle T.

Proof. By the proof of the Kadec-Pe lczynski theorem [KP] (or see [D, Chapter
VII]), for X := L1[0, 1] with its usual norm, sequences (vn)∞n=1 in Y , (un)∞n=1 in X
and (γn)∞n=1 in (0,∞) exist that satisfy the hypotheses of Corollary 1.3 above.

Combining 1.4 with Maurey’s theorem [M] allows us to state the fact below.

1.5 Theorem. Let Y be a subspace of L1[0, 1] with its usual norm. Then the
following are equivalent.

(i) Y is reflexive.
(ii) Y has the fixed point property.

2. Notes and remarks

The basic problem that is still open is: “If X is a Banach space isomorphic to `1,
does X fail the FPP?” Our results only provide a partial answer because there do
exist Banach spaces X isomorphic to `1, that contain no asymptotically isometric
copies of `1. These are described in the recent paper of Dowling et al. [DJLT]. In
contrast, in Dowling et al. [DLT] the authors show that the spaces `∞ and `1(Γ),
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with Γ uncountable, cannot be equivalently renormed to have the FPP. Indeed, all
such renormings contain asymptotically isometric copies of `1. This leads to the fact
that for a broad class of Orlicz spaces with the Orlicz norm, reflexivity is equivalent
to the FPP. Moreover, in Dodds et al. [DDDL], it is shown that every nonreflexive
subspace of the trace class C1 or the predualM∗ of a von Neumann algebraM with
a faithful, normal, finite trace τ contains an asymptotically isometric copy of `1.
Further, in Carothers et al. [CDL] the analogous result for nonreflexive subspaces
of the Lorentz function space Lw,1(0,∞) is established. Indeed, for subspaces of
C1 and Lw,1(0,∞) with a strictly decreasing weight function w, the analogue of
Theorem 1.5 is true (see [DDDL, CDL]). The situation where `1 is replaced by c0
is also considered in [DJLT] and [DLT].

The ideas herein were partially inspired by an example of Lim [Lim]. Smyth [S]
has extended the approach based on Lim’s example to show that the dual of every
space C(Ω), where Ω is an infinite compact Hausdorff space, fails the weak-star
fixed point property with an affine contraction. In particular, `1 fails the weak-
star fixed point property with respect to its predual c (the space of all convergent
sequences) with a contractive, affine map.
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