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Abstract. Let τ(n) (the cost of n) be the minimum number of arithmetic

operations needed to obtain n starting from 1. We prove that τ(n) ≥ logn
log logn

for almost all n ∈ N, and, given ε > 0, τ(n) ≤ (1+ε) logn
log logn

for all n suffi-

ciently large. We prove analogous results for costs of polynomials with integer
coefficients.

Introduction

The aim of this work is the study of arithmetic cost functions. The most basic
case is the cost of an integer, which is the minimum number of arithmetic operations
needed to obtain the integer starting from 1. That is, given k ∈ Z, τ(k) is defined
as the minimum m ∈ N such that there exists a sequence (s0, s1, . . . , sm) where
s0 = 1, sm = k and for each ` ≥ 1 there are i, j, 0 ≤ i, j < `, with s` = Op(si, sj),
Op ∈ {+,−, ·}. This function plays an important role in the paper by Shub and
Smale ([SS]), in which some questions are proposed about the behavior of the
function τ (which we shall discuss later) that have consequences in the study of
an algebraic version of the famous and fundamental problem in computer science
known as “NP 6= P” (see [SS]). In [SS] and in [MS] the following universal bounds
for τ are presented:

log2 log2m+ 1 ≤ τ(m) ≤ 2 log2m, ∀m ∈N.

The first inequality cannot be improved, since τ(22k) = k+1. These inequalities
are proved in the paper by de Melo and Svaiter ([MS]), where it is also proved that

for any fixed ε > 0, we have τ(n) ≥ logn
(log log n)1+ε for almost all n ∈ N .

Here we improve the above results, by proving the following:
For almost all n ∈ N we have τ(n) ≥ logn

log logn and, for any given ε > 0, we have

τ(n) ≤ (1+ε) logn
log log n , for every n ∈ N sufficiently large. More precisely, given ε > 0,{
τ(n) ≥ logn

log log n + (1− ε) log n log log log n
(log logn)2 , for almost all n ∈ N,

τ(n) ≤ logn
log log n + (3 + ε) log n log log log n

(log logn)2 , for n large enough.

Moreover, the first inequality does not depend on the number of binary opera-
tions that we can use (provided that this number is finite).
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Subsequently, we extend our results for more general cost functions, such as cost
functions of polynomials, and discuss some open problems.

1. The lower estimates

Theorem 1. Suppose that we have O binary or unary operations in the definition
of τ . Then N(k) = #{n ∈N | τ(n) ≤ k} satisfies N(k) ≤ Ak ·kk for some constant
A > 0.

Proof. Let Ω = {Op1, Op2, . . . , OpO} be the set of operations. Then τ(n) = k ⇒
∃(s0, s1, . . . , sk); s0 = 1, and for each ` ≥ 1 ∃i`, j`, 0 ≤ i, j < `, such that s` =
Op(si` , sj`), Op ∈ Ω, with sk = n. Let (r1, r2, . . . , r2k) := (i1, j1, i2, j2, . . . , ik, jk).
We must have {i1, j1, . . . , ik, jk} = {0, 1, 2, . . . , k − 1}, since otherwise we would
create an unnecessary si, and so τ(n) < k. Moreover, we may assume that there
exists a sequence 1 ≤ `1 < `2 < · · · < `k ≤ 2k such that r`i = i − 1, for i =
1, 2, . . . , k. Indeed, we may assume i` ≤ j`, for ` = 1, 2, . . . , k (perhaps by creating
the new operations Op∗j (x, y) = Opj(y, x)), and, if P (i) := min{j ∈ {1, 2, . . . , 2k} |
rj = i}, for i = 0, 1, . . . , k − 1, we shall have, perhaps rearranging the order of the
operations, that P (0) < P (1) < · · · < P (k − 1), because if P (i) > P (i + 1), then
we do not use si to create si+1, and can therefore create si+1 before si. Now we
can take `i := P (i).

LetN ′(k) = #{n ∈ N | τ(n) = k}. By the above arguments,N ′(k) ≤ Ok ·N ′′(k),
where N ′′(k) = #{(r1, r2, . . . , r2k) | ri ∈ {0, 1, . . . , k − 1}, and there are 1 ≤ `1 <
`2 < · · · < `k ≤ 2k with r`i = i − 1, for i = 1, 2, . . . , k}, but then N ′′(k) ≤
Ck2k · kk ≤ 4k · kk; thus N ′(k) ≤ (4O)k · kk, and so N(k) ≤

∑k
r=0N

′(r) ≤ Ak · kk,
for A = 4O + 1.

Corollary. Given ε > 0, we have, for almost all n ∈ N, that

τ(n) ≥ logn

log logn
+ (1− ε) log n log log logn

(log logn)2
=: f(n)

Proof. Let us compute B(n) = #{k ≤ n | τ(k) ≤ f(k)}. If k ∈ B(n) then
τ(k) ≤ f(k) ≤ f(n), and we have at most N(f(n)) numbers with this property,
that is, at most Af(n) · f(n)f(n) numbers with this property, by the theorem; but
now we have, for n large enough,

Af(n)f(n)f(n) = exp(f(n) log(Af(n))) ≤ exp

(
f(n) log

(
logn

(log logn)1− ε2

))
= exp(logn

(
1 + (1− ε) log log logn

log logn

)(
1− (1− ε

2
)
log log logn

log logn

)
≤ n exp

(
−ε

2

logn log log logn

log logn

)
.

Therefore limn→∞
B(n)
n = 0.

Remark. If we have p-ary operations instead of binary operations (p ≥ 2), we have
an analogous result by changing N(k) ≤ Ak · kk into N(k) ≤ Akk(p−1)k in the

theorem and f(n) into f(n)
p−1 in the corollary.
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2. The upper estimates

Theorem 2. Given ε > 0, we have, for n large enough,

τ(n) ≤ logn

log logn
+ (3 + ε)

logn log log logn

(log logn)2
=: g(n).

Proof. Let B = [ logn
(log logn)3 ], C = Bk, where k = [log logn] (in the calculations we

shall omit the integer parts). Take

s0 = 1, s1 = 2, s2 = 3, . . . , sB−2 = B − 1,

sB−1 = B, sB = 2B, sB+1 = 3B, . . . , s2B−3 = (B − 1)B, . . . ,

s(k−1)(B−1) = Bk−1, s(k−1)(B−1)+1 = 2Bk−1, . . . , sk(B−1)−1 = (B − 1)Bk−1,

sk(B−1) = Bk = C.

Now take the representation of n in basis C

n = a0 + a1C + · · ·+ arC
r, 0 ≤ ai < C, r = [

logn

logC
] ∼ logn

(log logn)2
,

and the representations of the ai in basis B:

ai = bi1 + bi2B + · · ·+ bik ·Bk−1, 0 ≤ bij < B.

Observe now that we have constructed the bij ·Bj−1, so we can construct an ai doing
k − 1 sums. Since we have r + 1 coefficients ai we have a total time (k − 1)(r + 1)
to generate all the ai’s. But

(k − 1)(r + 1) ∼ (
logn

logC
)(

logC

logB
) + k − r ∼ logn

logB
+ k − r.

Having generated the aj , we do the following, in 2r steps:

ar → ar · C → ar · C + ar−1 → (ar · C + ar−1) · C
→ · · · → arC

r + ar−1C
r−1 + · · ·+ a1C + a0 = n.

The total time is less than

k ·B +
log n

logB
+ r ∼ logn

(log logn)3
· log logn

+
logn

log logn− 3 log log logn
+

logn

(log logn)2

=
log n

log logn
+

3 logn log log logn

(log logn)2
+O(

logn

(log logn)2
)

≤ g(n).

Remark. Using essentially the same proof, we can replace g(n) by g(n)
p−1 if we have

the binary product and the p-ary sum s(x1, x2, . . . , xp) = x1 + x2 + · · ·+ xp.
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3. The cost of polynomials

We shall extend the previous results to polynomials in several variables whose
coefficients are integers or natural numbers.

Let P (X1, X2, . . . , Xk) be a polynomial. We define τ(P ) as the minimum m ∈ N
such that there exists a sequence (s−k, s1−k, . . . , s−1, s0, s1, . . . , sm), where s−i =
Xi, i = 1, 2, . . . , k; s0 = 1 and sm = P , such that for each ` ≥ 1 there are i, j < `
with s` = Op(si, sj), Op ∈ {+,−, 0}.

Theorem 3. Let P be a polynomial whose coefficients are natural numbers.
Let di be the degree of P in the variable Xi, and let

h(P ) = (1 + d1)(1 + d2) . . . (1 + dk) max
(I)

log(1 + a(I)),

where a(I) are the coefficients of P . Then, we have the following results:

i) τ(P ) ≥ h(P )
log h(P ) for almost all P (in the sense that the ratio of the number

of polynomials that satisfy this property to the number of polynomials with
h(P ) ≤M tends to 1 as M tends to infinity).

ii) For any given ε > 0, τ(P ) ≤ (1+ε)h(P )
log h(P ) , provided h(P ) is large enough.

Remark 1. If we consider polynomials with integer coefficients we still have the
above results, provided we define

h(P ) = (1 + d1)(1 + d2) . . . (1 + dk) max
(I)

log(1 + 2
∣∣a(I)

∣∣).
Remark 2. In the proof below we work with log = log2.

Proof. i) Given d1, d2, . . . , dk and M ∈N, there are N = (1 +M)(1+d1)(1+d2)(1+dk)

polynomials with degrees bounded by the di’s and with max(I) a(I) ≤M (the a(I)’s
are natural numbers). Since

logN

log logN
=

h

logh
,

where h = (1+d1) . . . (1+dk) log(M+1), the result will follow exactly as in Theorem
1, corollary.

ii) Let B =
[

h(P )
(log h(P ))3

]
, C = B[log h(P )]. At least one of the two following cases

must occur:
ii.1) max(I) a(I) ≥ C[log h(P )]. In this case we proceed as in Theorem 2. We

construct 1, 2, . . . , B − 1, B, 2B, . . . , (B − 1)B, . . . , (B − 1)B[log h(p)], C and then
construct all the a(I)’s using basis C, writing the coefficients in basis B. After this,
we obtain the polynomial term by term. The total cost of this is bounded by

B
logC

logB
+

(
1 +

logM

logB
+

logM

logC
+

logC

logB

)
D + 2D,

where M = max(I)(1+a(I)) and D = (1+d1)(1+d2) . . . (1+dk), and so is bounded
by

(1 +
ε

2
)
D logM

logB
< (1 + ε)

h(P )

logh(P )
,

for h(P ) sufficiently large.
ii.2) 2(1+di) ≥ C[log h(P )] for some i, say for i = 1. Let M = max(I)(1 + a(I)).
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We have two subcases:
ii.2.1) M ≥ 2

√
log h(P ): In this case we construct all the polynomials

∑r−1
j=0 δjX

j
1 ,

with δj ∈ {0, 1}, ∀j, and r = [logB] + 1, forming the set β and then we construct

all the polynomials in the set Γ = {Xjr
1 · P | P ∈ β, 0 ≤ j ≤ [logh(P )]}. Let

t = X
r[logh(P )]
1 and

A =


r[log h(p)]∑

j=0

δjX
j
1 , δj ∈ {0, 1}

 .

Then, we can write

P (x) =
∑

ã(I) · 2i0ti1Xi2
2 X

i3
3 . . . Xik

k ,

where i0 < log(M + 1), i1 ≤
d1

r[log h(P )]
,

(*)

ir ≤ dr for r ≥ 2 and ã(I) ∈ A. An element of A can be obtained as the sum of
[logh(P )] elements of Γ, and, since the total number of coefficients ã(I) is bounded
by

(1 + log(M + 1))

(
1 +

d1

r[log h(P )]

)
(1 + d2) . . . (1 + dk),

we can obtain all the ã(I)’s and then obtain P using (*), and we can estimate the
total cost as before, obtaining

τ(P ) ≤ (1 + ε)h(P )

logh(P )
,

for h(P ) sufficiently large.

ii.2.2) M < 2
√

log h(P ): In this case we construct all the polynomials
∑r−1
j=0 δjX

j
1 ,

with δj ∈ {0, 1, 2, . . . ,M − 1}, ∀j and r = [ logB
logM ], forming the set β, and then we

construct all the polynomials in the set Γ = {Xjr
1 · P | P ∈ β, 0 ≤ j ≤ [log h(P )]}.

Let t = X
r[logh(P )]
1 and

A =


r[log h(p)]∑

j=0

δjX
j
1 , δj ∈ {0, 1, 2, . . . ,M − 1}

 .

Then we can write

P (x) =
∑

ã(I) · ti1Xi2
2 X

i3
3 . . .Xik

k , where i1 ≤
d1

r[log h(P )]
,(*)

ir ≤ dr for r ≥ 2 and ã(I) ∈ A. An element of A can be obtained as the sum of
[logh(P )] elements of Γ, and, since the total number of coefficients ã(I) is bounded
by (

1 +
d1

r[log h(P )]

)
(1 + d2) . . . (1 + dk),

we can obtain all the ã(I)’s and then obtain P using (*), and we can estimate the
total cost as before, obtaining

τ(P ) ≤ (1 + ε)h(P )

logh(P )
,

for h(P ) sufficiently large.
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Remark. The case of integer coefficients with max(I)

∣∣a(I)

∣∣ = M is essentially equiv-
alent to the case of natural coefficients with max(I) a(I) = 2M . We can easily see
this by adding or subtracting the polynomial

M(1 +X1 + · · ·+Xd1
1 ) . . . (1 +Xk + · · ·+Xdk

k ),

which has very small cost.

4. Remarks and open problems

The most important open question related to τ(n) is to decide whether there are
natural numbers mk ≥ 1 and a C > 0 such that τ(mk · k!) ≤ (log k)C , ∀k ∈ N. If
such a sequence does not exist then the algebraic version of NP 6= P is true, as is
proved in [SS]. About this question we have the following remarks:

• If there is a C > 0 such that τ(C2n−1

2n ) ≤ nC , then there exists such a sequence
mk, namely mk = (2[log2 k]+1)!/k!, because

(2n)! = C2n−1

2n (C2n−2

2n−1 )2(C2n−3

2n−2 )4 . . . (C1
2 )2n−1

and therefore τ((2n)!) ≤ nC′ , for some constant C′. (C2n−1

2n is the central coefficient
of (1 +X)2n and, given X , we can compute (1 +X)2n using n+ 1 operations.)
• If we have the operations +, ·,− and 2n, then there exists such a sequence

mk. Indeed, we can construct a sequence Mk with τ(Mk) ≤ 4k satisfying n ≤ 2k;
hence n|Mk. It is enough to take M0 = 1, Mk+1 = 2Mk(22Mk − 1), because n ≤
2k+1, n odd⇒ ϕ(n)

2 ≤ 2k ⇒ ϕ(n)
2 |Mk ⇒ n|Mk+1 (Mk+1 is divisible by sufficiently

large powers of 2). Now is easy to check that (2n)!|M0 ·M2
1 ·M4

2 · · ·M2n

n =: Pn,

which satisfies τ(Pn) ≤ 5n(n+1)
2 .

There is another open question concerning costs with bounded memory. Let g ≥
1 and define τg(n) as τ(n) with the restriction that for each ` ≥ 1, s` = Op(si, sj)
with si, sj ∈ {1, s`−g, s`−g+1, . . . , s`−1}. The question is to determine if there are
g ≥ 1 and C > 0 such that τg(n) ≤ τ(n)C , for every n ∈ N. About this we have
the following remarks:
• If g = 5 and we have the operations +,−, ·, / and [ ] (the integer part func-

tion), then τg(n) ≤ τ(n)C for some C. Indeed, if (s0, s1, . . . , sk), sk = n is a

computing sequence for n, we may keep 2s0 + 4s1 + 16s2 + · · · + 22rsr in the po-

sition P1 of the memory and use the position P2 to generate 22j . We obtain sj
doing [(

Xj

(22j )2
−
[
Xj

(22j )2

])
· 22j

]
= sj

(recall that sj ≤ 22j−1

), where Xj = 2s0 +4s1 + · · ·+22jsj . We put si and sj on the
positions P3 and P4 and do Op(si, sj) = sr+1. Then we put sr+1 in the position

P3 and Xr+1 = X2 + 22r+1

sr+1 in the position P1. We proceed so until we obtain
sk. It is easy to see that the total time is polynomially related to τ(n) = k.
• If g = 1 and the operations are +,−, · and /, then τg is not polynomially

related to τ . Indeed, we can only transform an si into si+1 = si ± 1, si+1 = 2si
or si+1 = s2

i . If (s0, s1, . . . , sk) is a computing sequence for n = sk, and r is the
maximum index such that sr = s2

r−1, we will have sk = 2ms2
r−1 + p, with m ≥ 0,
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|p| ≤ 2k−r ≤ 2k; hence there is ` ∈N such that
∣∣n− `2∣∣ ≤ 2k or

∣∣n− 2`2
∣∣ ≤ 2k. If

Xm =
1

2
((3 + 2

√
2)2m + (3− 2

√
2)2m),

Ym =
1

2
√

2
((3 + 2

√
2)2m − (3− 2

√
2)2m), n = X2

m + 22m ,

then X2
m−2Y 2

m = 1, Xm+1 = 2X2
m−1, so τ(Xm) ≤ 3m and τ(X2

m+22m) ≤ 4m+1,
but if a ∈N, then∣∣∣a2 − (X2

m + 22m)
∣∣∣ ≥ min{22m ,

∣∣∣(Xm + 1)2 − (X2
m + 22m)

∣∣∣} = 22m ,

and ∣∣∣2a2 − (X2
m + 22m)

∣∣∣ =
∣∣∣2a2 − 2Y 2

m − 1− 22m
∣∣∣

≥ min{22m + 1,
∣∣∣2((Ym + 1)2 − Y 2

m)− 1− 22m
∣∣∣} = 22m + 1⇒ 2k ≥ 22m .

Thus k ≥ 2m, so

τ1(X2
m + 22m) ≥ 2m >> τ(X2

m + 22m)C ,

∀C > 0 fixed, if m is large enough.

Notice, however, that τ1(22k) = k + 1, and τ1(n) ≤ 2 log2 n, for every n ∈ N.
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