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Abstract. In this paper, we will prove that the random version of Fan’s The-
orem (Math. Z. 112 (1969), 234–240) is true for 1-set-contractive random op-
erator f : Ω×BR → X, where BR is a weakly compact separable closed ball in
a Banach space X and Ω is a measurable space. This class of 1-set-contractive
random operator includes condensing random operators, semicontractive ran-
dom operators, LANE random operators, nonexpansive random operators and
others. As applications of our theorems, some random fixed point theorems of
non-self-maps are proved under various well-known boundary conditions.

1. Introduction and preliminaries

Since Bharucha-Reid [1] proved the stochastic version of the well-known
Schauder’s fixed point theorem, random fixed point theory and applications have
been developed rapidly in recent years (see, e.g., [5, 6, 8, 9, 13, 15, 16]). In this
paper, we will consider a stochastic version of a very interesting theorem of Fan [4,
Theorem 2] which is stated as follows:

Let K be a nonempty compact convex set in a normed linear space X . For any
continuous map f from K into X , there exists a point u ∈ K such that

‖u− f(u)‖ = d(f(u),K).

This theorem has been of great importance in Nonlinear Analysis, Approxi-
mation Theory, Game Theory and Minimax Theorems. Various aspects of the
above theorem have been studied by Lin [7, 8], Papageorgiou [13], Sehgal and
Singh [15], Sehgal and Waters [16], and others. Recently, Lin [8, Theorem 1]
proved that Ky Fan’s Theorem is true for a continuous condensing random operator
f : Ω×BR → X , where BR is a separable closed ball in a Banach space X and Ω is
a measurable space. The purpose of the present paper is to extend Lin’s result to
more general 1-set-contractive random operators in a Banach space. We will also
prove that the random version of the above theorem is true for a semicontractive (or
LANE) random operator f : Ω×BR → X , where BR is a separable closed ball in a
uniformal convex Banach space. As applications of our theorems, some stochastic
fixed point theorems are derived under various well-known boundary conditions.
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Throughout this paper, (Ω,Σ) denotes a measurable space with Σ a sigma al-
gebra of subsets of Ω. Let X be a Banach space. A map F : Ω → X is said to
be measurable (respectively, weakly measurable) if F−1(B) = {ω ∈ Ω : F (ω) ∈ B}
∈ Σ for each closed (respectively, open) subset B of X . Let D be a nonempty
subset of X . Then a map f : Ω ×D → X is called a random operator if for each
fixed x ∈ D, the map f(·, x) : Ω→ x is measurable. A measurable map ϕ : Ω→ D
is called a random fixed point of f if f(ω, ϕ(ω)) = ϕ(ω) for each ω ∈ Ω.

A map f : D → X is called nonexpansive if ‖f(x) − f(y)‖ ≤ ‖x − y‖ for x,
y ∈ D; f is called completely continuous if it maps weakly convergent sequences
into strongly convergent sequences. We recall that a map f : D → X is said to be
demiclosed at y ∈ X [3] if, for any sequence {xn} in D, the conditions xn → x ∈ D
weakly and f(xn) → y strongly imply f(x) = y. A map f : D → X is called a k-
set-contractive [14] (k ≥ 0) if f is continuous and, for each bounded subset B of D,
α(f(B)) ≤ kα(B), where α(·) denotes Kuratowski’s measure of noncompactness;
f : D → X is said to be condensing if f is continuous and, for each bounded subset
B of D with α(B) > 0, α(f(B)) < α(B). A map f : D → X is said to be semi-
contractive [3, 14] if there exists a map V of D×D into X such that f(x) = V (x, x)
for x ∈ D, while:

(a) For each fixed x in D, V (·, x) is nonexpansive from D to X .
(b) For each fixed x in D, V (x, ·) is completely continuous from D to X , uni-

formly for x in bounded subset of D.
We say that a continuous map f of D into X is LANE [11] (locally almost

nonexpansive) if given x ∈ D and ε > 0, there exists a weak neighborhood Nx of x
in D (depending also on ε) such that ‖f(u)− f(v)‖ ≤ ‖u− v‖+ ε for u, v ∈ Nx.

A random operator f : Ω ×D → X is said to be continuous (1-set-contractive,
condensing, nonexpansive, semicontractive, LANE, completely continuous, etc.) if
the map f(ω, ·) : D → X is so, for each ω ∈ Ω. For R > 0, let

BR = {x ∈ X : ‖x‖ ≤ R}, SR = {x ∈ X : ‖x‖ = R}.

2. Main results

In order to prove our main theorems we need the following lemma which will
play a crucial role in this paper.

Lemma 2.1. Let X be a Banach space and T : BR → X be a 1-set-contractive
map such that I − T is demiclosed at 0, where I is the identity map on X. Then
I − B is also demiclosed at 0, where B ≡ hT : BR → BR, and h : X → BR is a
map defined by

h(x) =

x if ‖x‖ ≤ R,
Rx

‖x‖ if ‖x‖ ≥ R.

Proof. Let {xn} be any sequence in BR such that

xn → u ∈ BR weakly, xn −B(xn)→ 0 as n→∞.(2.1)

We have to distinguish two possible cases:

Case 1. If there exists a subsequence {xnk} of {xn} such that ‖T (xnk)‖ ≤ R for
all k, then B(xnk) = T (xnk) by the definition of h. Hence, xnk − T (xnk) = xnk −
B(xnk) → 0 as k → ∞. It follows from the demiclosedness at 0 of I − T that
u− T (u) = 0. Therefore, B(u) = h(T (u)) = h(u) = u by the definition of h.
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Case 2. Otherwise, there exists an integer N such that, for n ≥ N , ‖T (xn)‖ > R,
then B(xn) = RT (xn)/‖T (xn)‖ by the definition of h. Since T is a 1-set-contractive
map and {xn} is bounded, {‖T (xn)‖} is bounded. Hence there exist a convergent
subsequence {‖T (xni)‖} of {‖T (xn)‖} and a real number r > 0 such that

‖T (xni)‖ → r as i→∞.(2.2)

From ‖T (xni)‖ > R (i = 1, 2, 3, · · · ), we have r ≥ R. Therefore, by (2.1) and (2.2),
we have

xni −
R

r
T (xni) =

(
xni −

RT (xni)

‖T (xni)‖

)
+

(
RT (xni)

‖T (xni)‖
− R

r
T (xni)

)
= (xni −B(xni )) +

(
1

‖T (xni)‖
− 1

r

)
RT (xni)

→ 0 as i→∞.

(2.3)

If r = R, then xni −T (xni)→ 0 (i→∞), by (2.3). It follows from the demiclosed-
ness at 0 of I − T that u = T (u). Therefore, B(u) = h(T (u)) = h(u) = u by the
definition of h. If r > R, then (R/r)T is a (R/r)-set-contractive map with R/r < 1.
Let yni ≡ xni − (R/r)T (xni). Then α({yni}) = 0 and xni = yni + (R/r)T (xni).
It follows that α({xni}) = 0. Hence there exists a subsequence {xnij } of {xni}
such that {xnij } converges to u. This and the continuity of T imply that ynij →
u − (R/r)T (u) = 0, i.e., u = (R/r)T (u). From (2.2), we have ‖T (u)‖ = r > R.
Therefore u = RT (u)/‖T (u)‖ = B(u) by the definition of h.

This completes the proof of Lemma 2.1.

We shall also need the following random fixed point theorem which is Theorem
2.1 in [9]:

Lemma 2.2. Let D be a nonempty weakly compact convex subset of a separable
Banach space X, and f : Ω×D → D be a 1-set-contractive random operator such
that I − f(ω, ·) is demiclosed, for each ω ∈ Ω. Then f has a random fixed point.

Remark 2.1. From the proof of Lin’s theorem above, we can easily see that we only
need the hypothesis I − f(ω, ·) to be demiclosed at 0 for each ω ∈ Ω instead of
I− f(ω, ·) demiclosed for each ω ∈ Ω, and Lin’s result also holds, if we assume that
D is separable instead of X is separable.

Theorem 2.1. Let BR be a weakly compact separable subset of X and f : Ω×BR →
X be a 1-set-contractive random operator such that I − f(ω, ·) is demiclosed at 0,
for each ω ∈ Ω, where I is the identity map on X. Then there exists a measurable
map ϕ : Ω→ BR such that for each ω ∈ Ω

‖ϕ(ω)− f(ω, ϕ(ω))‖ = d(f(ω, ϕ(ω)), BR).(2.4)

Moreover, to this ϕ, for each ω ∈ Ω, if ‖f(ω, ϕ(ω))‖ > R, then ϕ(ω) ∈ SR and

ϕ(ω) =
Rf(ω, ϕ(ω))

‖f(ω, ϕ(ω))‖ , ‖f(ω, ϕ(ω))− ϕ(ω)‖ = ‖f(ω, ϕ(ω))‖ −R > 0;(2.5)

if ‖f(ω, ϕ(ω))‖ ≤ R, then ϕ(ω) = f(ω, ϕ(ω)).

Proof. Let h be the same as in Lemma 2.1. From Nussbaum [10, Corollary 1], h is
a 1-set-contractive map. Define F : Ω × BR → BR by F (ω, x) = h(f(ω, x)). It is
easy to see that F is a 1-set-contractive random operator. For arbitrary but fixed
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ω ∈ Ω, I − F (ω, ·) is demiclosed at 0 by Lemma 2.1. From Lemma 2.2, F has a
random fixed point ϕ : Ω→ BR, i.e., ϕ is a measurable map and F (ω, ϕ(ω)) = ϕ(ω)
for each ω ∈ Ω. Now we will prove that this measurable map ϕ satisfies the desired
property. For each ω ∈ Ω, we consider the following two cases:

(i) If ‖f(ω, ϕ(ω))‖ ≤ R, then F (ω, ϕ(ω)) = f(ω, ϕ(ω)) by the definition of h.
Thus, we have ‖ϕ(ω)− f(ω, ϕ(ω))‖ = ‖F (ω, ϕ(ω))− f(ω, ϕ(ω))‖ = 0.

(ii) If ‖f(ω, ϕ(ω))‖ > R, then F (ω, ϕ(ω)) = Rf(ω, ϕ(ω))/‖f(ω, ϕ(ω))‖ by the
definition of h. Hence, we have

‖ϕ(ω)− f(ω, ϕ(ω))‖ = ‖F (ω, ϕ(ω))− f(ω, ϕ(ω))‖

=

∥∥∥∥ Rf(ω, ϕ(ω))

‖f(ω, ϕ(ω))‖ − f(ω, ϕ(ω))

∥∥∥∥
= ‖f(ω, ϕ(ω))‖ −R.

Thus, for any x ∈ BR, we have

‖ϕ(ω)− f(ω, ϕ(ω))‖ ≤ ‖f(ω, ϕ(ω))‖ −R
≤ ‖f(ω, ϕ(ω))‖ − ‖x‖
≤ ‖f(ω, ϕ(ω))− x‖.

Therefore, (2.4) holds.
For each ω ∈ Ω, if ‖f(ω, ϕ(ω))‖ > R with ϕ(ω) ∈ BR, then f(ω, ϕ(ω)) /∈ BR

and by (ii), (2.5) holds. If ‖ϕ(ω)‖ < R, then there exists a ∈ (0, 1) such that
u ≡ aϕ(ω) + (1− a)f(ω, ϕ(ω)) ∈ BR. It follows that

d(f(ω, ϕ(ω)), BR) ≤ ‖f(ω, ϕ(ω))− u‖
= a‖f(ω, ϕ(ω))− ϕ(ω)‖
< ‖f(ω, ϕ(ω))− ϕ(ω)‖
= d(f(ω, ϕ(ω)), BR).

We get a contradiction. Hence ϕ(ω) ∈ SR. If ‖f(ω, ϕ(ω))‖ ≤ R with ϕ(ω) ∈ BR,
then by (i) we have ϕ(ω) = f(ω, ϕ(ω)).

This completes the proof of the theorem.

Theorem 2.2. Let BR be a separable subset of a uniformly convex Banach space X
and f : Ω× BR → X be a semicontractive random operator. Then the conclusions
of Theorem 2.1 hold.

Proof. From Petryshyn [14, Lemma 3.2 and p. 338], f : Ω × BR → X is 1-set-
contractive random operator. By Browder [3, Theorem 3], I−f(ω, ·) is demiclosed,
for each ω ∈ Ω. Hence, Theorem 2.2 follows from Theorem 2.1.

Corollary 2.1. Let BR be a separable subset of a uniformly convex Banach space
X, g : Ω × BR → X a nonexpansive random operator and h : Ω × BR → X
a completely continuous random operator. If f ≡ g + h, then the conclusions of
Theorem 2.1 hold.

Proof. Since f : Ω×BR → X is a semicontractive random operator under the rep-
resentation V (ω, u, v) = g(ω, u) + h(ω, v), this corollary just follows from Theorem
2.2.

Theorem 2.3. Let BR be a separable subset of a uniformly convex Banach space
X, g : Ω×BR → X a LANE random operator, and h : Ω×BR → X a completely
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continuous random operator. If f ≡ g + h, then the conclusions of Theorem 2.1
hold.

Proof. From [14, Remark 3.7], f : Ω×BR → X is also a LANE random operator.
By [11], f is a 1-set-contractive random operator and I − f(ω, ·) is demiclosed, for
each ω ∈ Ω. Therefore, Theorem 2.3 follows from Theorem 2.1.

The following is another random approximation theorem of Ky Fan type. Before
we state the theorem, we recall a definition. A Banach space X is said to satisfy
Opial’s condition [12] if the following holds: If {xn} converges weakly to x0, and
x 6= x0, then lim inf ‖xn − x‖ > lim inf ‖xn − x0‖. Banach spaces satisfying Opial’s
condition include Hilbert spaces and lp (1 ≤ p <∞) spaces.

Theorem 2.4. Let BR be a weakly compact separable closed ball of a Banach space
X, g : Ω × BR → X a nonexpansive random operator, and h : Ω × BR → X
a completely continuous random operator. If X satisfies Opial’s condition and
f ≡ g + h, then the conclusions of Theorem 2.1 hold.

Proof. Since f is 1-set-contractive and I − f(ω, ·) is demiclosed, for each ω ∈ Ω,
by Opial [12] if X satisfies Opial’s condition, Theorem 2.4 follows from Theorem
2.1.

3. Applications to random fixed point theorems

Theorem 3.1. Suppose that X, BR and f are the same as in Theorem 2.1. Then
f has a random fixed point if f satisfies one of the following conditions:

(B1) For each ω ∈ Ω, each x ∈ SR with ‖f(ω, x)‖ > R, there exists y, depending
on ω and x, in IBR(x) = {x + c(z − x) : some z ∈ BR, c > 0} such that ‖y −
f(ω, x)‖ < ‖x− f(ω, x)‖.

(B2) f is weakly inward, i.e., for each ω ∈ Ω, f(ω, x) ∈ IBR(x) for x ∈ SR.
(B3) x 6= λf(ω, x) for each ω ∈ Ω and x ∈ SR with ‖f(ω, x)‖ > R and 0 < λ < 1.
(B4) ‖f(ω, x)−x‖ 6= ‖f(ω, x)‖−R, for each ω ∈ Ω and x ∈ SR with ‖f(ω, x)‖ >

R.
(B5) For each ω ∈ Ω and x ∈ SR, with ‖f(ω, x)‖ > R, there exists α ∈ (1,∞)

such that

‖f(ω, x)‖α −Rα ≤ ‖f(ω, x)− x‖α.
(B6) For each ω ∈ Ω and x ∈ SR, with ‖f(ω, x)‖ > R, there exists β ∈ (0, 1)

such that

‖f(ω, x)‖β −Rβ ≥ ‖f(ω, x)− x‖β .
Proof. By Theorem 2.1, there exists a measurable map ϕ : Ω→ BR such that, for
each ω ∈ Ω, (2.4) holds, and for each ω ∈ Ω, if ‖f(ω, ϕ(ω))‖ > R, then ‖ϕ(ω)‖ = R
and (2.5) holds; if ‖f(ω, ϕ(ω))‖ ≤ R, then ϕ(ω) = f(ω, ϕ(ω)). We will prove that ϕ
is the desired random fixed point of f . Toward this end, we consider the following
two cases:

(a) If there exists ω ∈ Ω, such that ‖ϕ(ω)‖ < R, then there exists λ ∈ (0, 1) such
that ‖λϕ(ω) + (1− λ)f(ω, ϕ(ω))‖ < R. Therefore

‖ϕ(ω)− f(ω, ϕ(ω))‖ = d(f(ω, ϕ(ω)), BR)

≤ ‖f(ω, ϕ(ω))− [λϕ(ω) + (1− λ)f(ω, ϕ(ω))]‖ = λ‖ϕ(ω)− f(ω, ϕ(ω))‖,
it follows from 0 < λ < 1 that ϕ(ω) = f(ω, ϕ(ω)).
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(b) If there exists ω ∈ Ω, such that ‖ϕ(ω)‖ = R, we will show that ϕ(ω) =
f(ω, ϕ(ω)). By (2.4), we need only show that f(ω, ϕ(ω)) ∈ BR.

(1) If ‖f(ω, ϕ(ω))‖ > R and f satisfies (B1), then there exists y in IBR(ϕ(ω))
such that

‖y − f(ω, ϕ(ω))‖ < ‖ϕ(ω)− f(ω, ϕ(ω))‖.
Since y ∈ IBR(ϕ(ω)), there exists z ∈ BR, c > 0 such that y = ϕ(ω) +
c(z − ϕ(ω)). Since y /∈ BR (otherwise it contradicts the choice of ϕ), we can
assume c > 1. Then

z =
y

c
+

(
1− 1

c

)
ϕ(ω) = (1− β)y + βϕ(ω),

where β = 1− 1/c, 0 < β < 1. Therefore

‖z − f(ω, ϕ(ω))‖ ≤ (1− β)‖y − f(ω, ϕ(ω))‖+ β‖ϕ(ω)− f(ω, ϕ(ω))‖
< (1− β)‖ϕ(ω)− f(ω, ϕ(ω))‖+ β‖ϕ(ω)− f(ω, ϕ(ω))‖
= ‖ϕ(ω)− f(ω, ϕ(ω))‖,

which contradict the choice of ϕ. Hence f(ω, ϕ(ω)) ∈ BR.
(2) If f satisfies condition (B2), then f satisfies (B1).
(3) If‖f(ω, ϕ(ω))‖ > R and f satisfies (B3), then by (2.5) we have ϕ(ω) =

λ0f(ω, ϕ(ω)), where λ0 = R/‖f(ω, ϕ(ω))‖, 0 < λ0 < 1, which contradicts condition
(B3). Therefore, f(ω, ϕ(ω)) ∈ BR.

(4) If ‖f(ω, ϕ(ω))‖ > R and f satisfies (B4), then by (2.5) we have ‖f(ω, ϕ(ω))−
ϕ(ω)‖ = ‖f(ω, ϕ(ω))‖−R. This is a contradiction to the condition (B4). Therefore,
f(ω, ϕ(ω)) ∈ BR.

(5) If ‖f(ω, ϕ(ω))‖ > R and f satisfies (B5), then there exists α ∈ (1,∞) such
that

‖f(ω, ϕ(ω))‖α −Rα ≤ ‖f(ω, ϕ(ω))− ϕ(ω)‖α.
Let λ = R/‖f(ω, ϕ(ω))‖; then 0 < λ < 1 and

(‖f(ω, ϕ(ω))‖ −R)α

‖f(ω, ϕ(ω))‖α = (1− λ)α < 1− λα ≤ ‖f(ω, ϕ(ω))− ϕ(ω)‖α
‖f(ω, ϕ(ω))‖α .

Hence ‖f(ω, ϕ(ω)) − ϕ(ω)‖ > ‖f(ω, ϕ(ω))‖ − R, we get a contradiction to (2.5).
Therefore, f(ω, ϕ(ω)) ∈ BR.

(6) If ‖f(ω, ϕ(ω))‖ > R and f satisfies (B6), then similar to the proof of (5), we
can prove that f(ω, ϕ(ω)) ∈ BR.

In sum, we have shown that the measurable map ϕ : Ω → BR satisfies ϕ(ω) =
f(ω, ϕ(ω)) for each ω ∈ Ω, i.e., ϕ is a random fixed point of f .

Using similar methods, we can show the following theorems and corollary, and
we omit their proof.

Theorem 3.2. Let BR be a separable subset of a uniformly convex Banach space
X. If f : Ω×BR → X is a semicontractive random operator and satisfies any one
of the six conditions of Theorem 3.1, then f has a random fixed point.

Corollary 3.1. Let BR be a separable subset of a uniformly convex Banach space
X, g : Ω × BR → X a nonexpansive random operator, and h : Ω × BR → X a
completely continuous random operator. If f ≡ g + h satisfies any one of the six
conditions of Theorem 3.1, then f has a random fixed point.
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Theorem 3.3. Let BR be a separable subset of a uniformly convex Banach space
X, g : Ω×BR → X a LANE random operator, and h : Ω×BR → X a completely
continuous random operator. If f ≡ g+ h satisfies any one of the six conditions of
Theorem 3.1, then f has a random fixed point.

Theorem 3.4. Let BR be a weakly compact separable closed ball of a Banach space
X, g : Ω × BR → X a nonexpansive random operator, and h : Ω × BR → X
a completely continuous random operator. If X satisfies Opial’s condition and
f ≡ g + h satisfies any one of the six conditions of Theorem 3.1, then f has a
random fixed point.

Acknowledgment

The author would like to thank the referee for reading this paper carefully,
providing valuable suggestions and comments, and pointing out a major error in
the original version of this paper.

References

1. A. T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc.
82 (1976), 641–645. MR 54:1390

2. A. T. Bharucha-Reid, Random integral equations, Academic Press, New York and London,
1972. MR 56:1459

3. F. E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull.
Amer. Math. Soc. 74 (1968), 660–665. MR 37:5742

4. K. Fan, Extensions of two fixed point theorems of F. E. Browder, Math. Z. 112 (1969),
234–240. MR 40:4830

5. S. Itoh, Random fixed point theorems with an application to random differential equations in
Banach spaces, J. Math. Anal. Appl. 67 (1979), 261–273. MR 80f:60059

6. K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selector, Bull. Acad. Polon.

Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 397–403. MR 32:6421
7. T. C. Lin, A note on a theorem of Ky Fan, Canad. Math. Bull. 22 (1979), 513–515. MR

81d:47038
8. T. C. Lin, Random approximations and random fixed point theorems for non-self-maps, Proc.

Amer. Math. Soc. 103 (1988), 1129–1135. MR 89i:47109
9. T. C. Lin, Random approximations and random fixed point theorems for continuous 1-set-

contractive random maps, Proc. Amer. Math. Soc. 123 (1995), 1167–1176. MR 95e:47088
10. R. D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. 89

(1971), 217–258. MR 47:903
11. R. D. Nussbaum, The fixed point index and fixed point theorems for k-set-contractions, Ph. D.

Thesis, Univ. of Chicago (1969).
12. Z. Opial, Weak convergence of the successive approximations for nonexpansive mappings,

Bull. Amer. Math. Soc. 73 (1967), 591–597. MR 35:2183
13. N. S. Papageorgiou, Random fixed point of theorems for measurable multifunctions in Banach

spaces, Proc. Amer. Math. Soc. 97 (1986), 507–514. MR 88a:60117.
14. W. V. Petryshyn, Fixed point theorems for various classes of 1-set-contractive and 1-ball-

contractive mappings in Banach spaces, Trans. Amer. Math. Soc. 182 (1973), 323–352. MR
48:7030

15. V. M. Sehgal and S. P. Singh, On random approximations and a random fixed point theorem
for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91–94. MR 86k:47049

16. V. M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators,
Proc. Amer. Math. Soc. 90 (1984), 425–429. MR 85g:47083

Department of Mathematics, Qufu Normal University, Qufu, Shandong, 273165, Peo-

ple’s Republic of China


