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ABSTRACT. In this paper, we will prove that the random version of Fan’s The-
orem (Math. Z. 112 (1969), 234-240) is true for 1-set-contractive random op-
erator f: Qx Br — X, where Bp is a weakly compact separable closed ball in
a Banach space X and €2 is a measurable space. This class of 1-set-contractive
random operator includes condensing random operators, semicontractive ran-
dom operators, LANFE random operators, nonexpansive random operators and
others. As applications of our theorems, some random fixed point theorems of
non-self-maps are proved under various well-known boundary conditions.

1. INTRODUCTION AND PRELIMINARIES

Since Bharucha-Reid [1] proved the stochastic version of the well-known
Schauder’s fixed point theorem, random fixed point theory and applications have
been developed rapidly in recent years (see, e.g., [5, 6, 8, 9, 13, 15, 16]). In this
paper, we will consider a stochastic version of a very interesting theorem of Fan [4,
Theorem 2] which is stated as follows:

Let K be a nonempty compact convex set in a normed linear space X. For any
continuous map f from K into X, there exists a point © € K such that

lu— f(u)ll = d(f(u), K).

This theorem has been of great importance in Nonlinear Analysis, Approxi-
mation Theory, Game Theory and Minimax Theorems. Various aspects of the
above theorem have been studied by Lin [7, 8], Papageorgiou [13], Sehgal and
Singh [15], Sehgal and Waters [16], and others. Recently, Lin [8, Theorem 1]
proved that Ky Fan’s Theorem is true for a continuous condensing random operator
f:Qx Br — X, where By is a separable closed ball in a Banach space X and €2 is
a measurable space. The purpose of the present paper is to extend Lin’s result to
more general 1-set-contractive random operators in a Banach space. We will also
prove that the random version of the above theorem is true for a semicontractive (or
LANE) random operator f : Q x Bp — X, where By, is a separable closed ball in a
uniformal convex Banach space. As applications of our theorems, some stochastic
fixed point theorems are derived under various well-known boundary conditions.
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Throughout this paper, (€2,%) denotes a measurable space with ¥ a sigma al-
gebra of subsets of 2. Let X be a Banach space. A map F :  — X is said to
be measurable (respectively, weakly measurable) if F~}(B) = {w € Q: F(w) € B}
€ 3 for each closed (respectively, open) subset B of X. Let D be a nonempty
subset of X. Then a map f: Q x D — X is called a random operator if for each
fixed € D, the map f(-,z) : Q — x is measurable. A measurable map ¢ : Q) — D
is called a random fixed point of f if f(w,p(w)) = ¢(w) for each w € Q.

A map f: D — X is called nonexpansive if ||f(z) — f(y)|| < ||z — yl| for =,
y € D; f is called completely continuous if it maps weakly convergent sequences
into strongly convergent sequences. We recall that a map f: D — X is said to be
demiclosed at y € X [3] if, for any sequence {z,} in D, the conditions =, — = € D
weakly and f(z,) — y strongly imply f(z) =y. A map f: D — X is called a k-
set-contractive [14] (k > 0) if f is continuous and, for each bounded subset B of D,
a(f(B)) < ka(B), where a(-) denotes Kuratowski’s measure of noncompactness;
f D — X is said to be condensing if f is continuous and, for each bounded subset
B of D with a(B) > 0, a(f(B)) < a(B). Amap f: D — X is said to be semi-
contractive [3, 14] if there exists a map V of D x D into X such that f(z) = V(x,x)
for x € D, while:

(a) For each fixed z in D, V (-, x) is nonexpansive from D to X.

(b) For each fixed z in D, V(x,-) is completely continuous from D to X, uni-
formly for x in bounded subset of D.

We say that a continuous map f of D into X is LANE [11] (locally almost
nonexpansive) if given x € D and € > 0, there exists a weak neighborhood N, of x
in D (depending also on €) such that ||f(u) — f(v)|| < |Ju —v| + € for u, v € N.

A random operator f :  x D — X is said to be continuous (1-set-contractive,
condensing, nonexpansive, semicontractive, LANE, completely continuous, etc.) if
the map f(w,-): D — X is so, for each w € Q. For R > 0, let

Br={r € X :||z|| < R}, Sp={zre X : || = R}.
2. MAIN RESULTS

In order to prove our main theorems we need the following lemma which will
play a crucial role in this paper.

Lemma 2.1. Let X be a Banach space and T : Bp — X be a 1-set-contractive
map such that I — T is demiclosed at 0, where I s the identity map on X. Then
I — B is also demiclosed at 0, where B = hT : B — Bgr, and h : X — Bpg is a
map defined by

x if ||z <R,
M=V B s R
B

Proof. Let {x,} be any sequence in By such that
(2.1) Ty, — u € B weakly, Ty — B(zp,) = 0 asn — occ.
We have to distinguish two possible cases:

Case 1. If there exists a subsequence {x,, } of {z,} such that ||T(z,,)|] < R for
all k, then B(z,,) = T(zy,) by the definition of h. Hence, x,, — T(xy,) = Tn, —
B(zp,) — 0 as k — oo. It follows from the demiclosedness at 0 of I — T that
u— T'(u) = 0. Therefore, B(u) = h(T(u)) = h(u) = u by the definition of h.
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Case 2. Otherwise, there exists an integer N such that, for n > N, |T(z,)|| > R,
then B(xy,) = RT(x,)/||T(xy)|| by the definition of h. Since T is a 1-set-contractive
map and {x,} is bounded, {||T(z,)||} is bounded. Hence there exist a convergent
subsequence {||T(zn,)||} of {||T(z,)]|} and a real number r > 0 such that

(2.2) IT(zn,)|] =7 asi— oo.
From ||T(z,,)|| > R (¢ =1,2,3,--+), we have r > R. Therefore, by (2.1) and (2.2),

we have
oo = Tton) = (oo~ e + (e - 776en0)
(23) — (on, — Blan,)) + <m - %) RT ()

— 0 as 1 — oo.

If r = R, then x,,, — T'(xy,) — 0 (i — 0), by (2.3). It follows from the demiclosed-
ness at 0 of I — T that u = T'(u). Therefore, B(u) = h(T(u)) = h(u) = u by the
definition of h. If r > R, then (R/r)T is a (R/r)-set-contractive map with R/r < 1.
Let yn, = n, — (R/7)T(zp,). Then a({yn,}) = 0 and x,, = yn, + (R/r)T(xn,).
It follows that a({z,,}) = 0. Hence there exists a subsequence {l’n]} of {zn,}
such that {xnj} converges to u. This and the continuity of T" imply that y, —
u— (R/r)T(u) =0, ie,, w = (R/r)T(u). From (2.2), we have ||T(u)|| = r > R.
Therefore u = RT'(u)/||T(v)|| = B(u) by the definition of h.

This completes the proof of Lemma 2.1. O

We shall also need the following random fixed point theorem which is Theorem
2.1 in [9]:

Lemma 2.2. Let D be a nonempty weakly compact convexr subset of a separable
Banach space X, and f: Q x D — D be a 1-set-contractive random operator such
that I — f(w,-) is demiclosed, for each w € Q. Then f has a random fized point.

Remark 2.1. From the proof of Lin’s theorem above, we can easily see that we only
need the hypothesis I — f(w,-) to be demiclosed at 0 for each w € Q instead of
I— f(w,-) demiclosed for each w € €, and Lin’s result also holds, if we assume that
D is separable instead of X is separable.

Theorem 2.1. Let By be a weakly compact separable subset of X and f : QX Bp —
X be a I-set-contractive random operator such that I — f(w,-) is demiclosed at 0,
for each w € Q, where I is the identity map on X. Then there exists a measurable
map @ : Q — Bg such that for each w € )

(2.4) le(w) = f(w, p(W)]| = d(f(w,p(w)), Br)-

Moreover, to this ¢, for each w € Q, if || f(w, p(w))|| > R, then p(w) € Sk and
O ®) ool — ol = [ ool B = 0

(25) ¢lw) = T o) [ (w, p(w)) = W) = [If(w, p(w))l] = B> 0;

if | f(w, )l < R, then p(w) = f(w, p(w)).

Proof. Let h be the same as in Lemma 2.1. From Nussbaum [10, Corollary 1], h is
a 1-set-contractive map. Define F': Q x Br — Bgr by F(w,z) = h(f(w,x)). It is
easy to see that F' is a 1-set-contractive random operator. For arbitrary but fixed
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we N, I—F(w,-) is demiclosed at 0 by Lemma 2.1. From Lemma 2.2, F has a
random fixed point ¢ : @ — Bp, i.e., ¢ is a measurable map and F(w, p(w)) = p(w)
for each w € 2. Now we will prove that this measurable map ¢ satisfies the desired
property. For each w € ), we consider the following two cases:

(i) If | f(w, ()| < R, then F(w,p(w)) = f(w,p(w)) by the definition of h.
Thus, we have [[p(w) — f(w, p(w))|| = [|F(w, p(w)) — f(w, p(w))|| = 0.

(i) If [[f(w, o))l > R, then F(w,p(w)) = Rf(w,ew))/[f(w,¢w))| by the

definition of h. Hence, we have

le(w) = fw, p(W) = [|1F(w, p(w)) = f(w,p(w))]]
Rf(w, ¢o(w))
- - rersten]
= [[f(w,e@) - R.
Thus, for any © € Bg, we have
le(w) = flw, @)l < [[f(w, el - R
< If (@, p(W)| = Il
< If(w, (W) — =]
Therefore, (2.4) holds.
For each w € Q, if ||f(w,p(w))|| > R with p(w) € Bg, then f(w,¢(w)) ¢ Br

and by (ii), (2.5) holds. If |¢(w)|| < R, then there exists a € (0,1) such that
u=apw)+ (1 —a)f(w,p(w)) € Br. It follows that

d(f(w, p(w)), Br) < || f(w, p(w)) — ull

= allf(w, p(w)) — W)
< |f(w, (@) = (W)l
= d(f(w, (w)), Br)-

We get a contradiction. Hence ¢(w) € Sg. If || f(w, ¢(w))|| < R with ¢(w) € Bg,

then by (i) we have p(w) = f(w, p(w)).
This completes the proof of the theorem. O

Theorem 2.2. Let By be a separable subset of a uniformly convexr Banach space X

and f:Q x Br — X be a semicontractive random operator. Then the conclusions
of Theorem 2.1 hold.

Proof. From Petryshyn [14, Lemma 3.2 and p. 338|, f : Q x Bp — X is 1-set-
contractive random operator. By Browder [3, Theorem 3], I — f(w, -) is demiclosed,
for each w € €. Hence, Theorem 2.2 follows from Theorem 2.1. O

Corollary 2.1. Let Bg be a separable subset of a uniformly convex Banach space
X, 9 :Q x Bp — X a nonexpansive random operator and h : Q@ x B — X
a completely continuous random operator. If f = g+ h, then the conclusions of
Theorem 2.1 hold.

Proof. Since f: Q) x B — X is a semicontractive random operator under the rep-
resentation V(w, u,v) = g(w, u) + h(w,v), this corollary just follows from Theorem
2.2. O

Theorem 2.3. Let Br be a separable subset of a uniformly convex Banach space
X, g:Qx Br — X a LANE random operator, and h : Q x Br — X a completely
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continuous random operator. If f = g+ h, then the conclusions of Theorem 2.1
hold.

Proof. From [14, Remark 3.7], f : @ x Bgp — X is also a LANE random operator.
By [11], f is a 1-set-contractive random operator and I — f(w, -) is demiclosed, for
each w € Q). Therefore, Theorem 2.3 follows from Theorem 2.1. O

The following is another random approximation theorem of Ky Fan type. Before
we state the theorem, we recall a definition. A Banach space X is said to satisfy
Opial’s condition [12] if the following holds: If {x,} converges weakly to xo, and
x # xo, then liminf ||x,, — x| > liminf ||x,, — x¢||. Banach spaces satisfying Opial’s
condition include Hilbert spaces and I? (1 < p < 00) spaces.

Theorem 2.4. Let Bgr be a weakly compact separable closed ball of a Banach space
X, g: Qx Br — X a nonexpansive random operator, and h :  x B — X
a completely continuous random operator. If X satisfies Opial’s condition and
f =g+ h, then the conclusions of Theorem 2.1 hold.

Proof. Since f is 1-set-contractive and I — f(w,-) is demiclosed, for each w € Q,
by Opial [12] if X satisfies Opial’s condition, Theorem 2.4 follows from Theorem
2.1. O

3. APPLICATIONS TO RANDOM FIXED POINT THEOREMS

Theorem 3.1. Suppose that X, Br and f are the same as in Theorem 2.1. Then
f has a random fized point if f satisfies one of the following conditions:

(By) For each w € Q, each x € Sg with ||f(w,x)|| > R, there exists y, depending
onw and x, in Ig,(x) = {x +c(z — ) : some z € Br, ¢ > 0} such that ||y —
fw,2)[ <llz = flw,2)]

(Ba) f is weakly inward, i.e., for each w € Q, f(w,z) € Ip,(x) for x € Sg.

(B3) x # Af(w,x) for eachw € Q and x € Sg with || f(w,z)|| > R and 0 < X < 1.

(Ba) If (w,z)—z|| # | f(w,2)|| — R, for each w € Q and x € Sr with || f(w, z)|| >
R.

(Bs) For each w € Q and x € Sg, with || f(w,x)|| > R, there exists o € (1,00)
such that

1f(w, 2)|* = R* <[ f(w, =) — =]
(Bg) For each w € Q and x € Sg, with || f(w,x)|| > R, there exists 3 € (0,1)
such that
1f (@, )| = R > || f(w, ) — ||”.
Proof. By Theorem 2.1, there exists a measurable map ¢ : 2 — Bp such that, for
each w € Q, (2.4) holds, and for each w € Q, if || f(w, p(w))|| > R, then ||p(w)|| = R
and (2.5) holds; if || f (w, p(w))|| < R, then p(w) = f(w, p(w)). We will prove that ¢
is the desired random fixed point of f. Toward this end, we consider the following
two cases:

(a) If there exists w € §, such that ||¢(w)|| < R, then there exists A € (0,1) such
that |[Ae(w) + (1 — A) f(w, (w))|| < R. Therefore

le(w) = f(w, p(W)] = d(f(w,p(w)), Br)
< [f(w, o(w)) = [Ap(w) + (1= A) fw, e(w)]l| = Alle(w) = fw, e(@))ll;
it follows from 0 < XA < 1 that p(w) = f(w, p(w)).
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b) If there exists w € €, such that ||¢o(w)|| = R, we will show that p(w) =
¢(w)). By (2.4), we need only show that f(w,p(w)) € Bg.
) If || f(w, p(w))]| > R and f satisfies (B1), then there exists y in I, (¢(w))
such that

(
f(w,
(1

ly = flw, el < llp(w) = Flw; e(@)]-

Since y € Ip,(¢(w)), there exists z € Bg, ¢ > 0 such that y = ¢(w) +
c(z — p(w)). Since y ¢ Bp (otherwise it contradicts the choice of ¢), we can
assume c¢ > 1. Then

z= % + (1— %) pw) = (1-PB)y+ Be(w),

where f=1—1/¢, 0 < 8 < 1. Therefore

[z = f(w, el < (1 = B)lly = flw, W)l + Blle(w) = fw, p(w))ll
< (= B)le(w) = Flw, el + Blle(w) = f(w, o))l

= llp(w) = fw, p@))l,

which contradict the choice of ¢. Hence f(w, p(w)) € Bg.

(2) If f satisfies condition (Bs), then f satisfies (By).

(3) || f(w,p(w))|| > R and f satisfies (Bs), then by (2.5) we have p(w) =
Mo f(w, p(w)), where Ag = R/|| f(w, o(w))||, 0 < Ag < 1, which contradicts condition
(Bs). Therefore, f(w,¢(w)) € Bg.

(4) If || f(w, p(w))|| > R and f satisfies (B4), then by (2.5) we have || f(w, ¢(w))—
()|l = I f(w, p(w))]|— R. This is a contradiction to the condition (B4). Therefore,
f(w,p(w)) € Bg.

(5) If || f(w, p(w))]| > R and f satisfies (Bs), then there exists o € (1,00) such
that

[[f (w, e@)|* = B* < [|f (w, p(w)) = (@)
Let A = R/|| f(w,¢(w))||; then 0 < A < 1 and

U f(w, () = B)* _ (1— A" <1-2* < 1f (w, p(w)) = p(w)[*
[[f(w, p(@))l [[f(w, p(@))l

Hence || f(w, p(w)) — pw)]| > |If(w,o(w))|| — R, we get a contradiction to (2.5).
Therefore, f(w,¢(w)) € Bg.

(6) If || f(w, p(w))|| > R and f satisfies (Bg), then similar to the proof of (5), we
can prove that f(w,p(w)) € Bg.

In sum, we have shown that the measurable map ¢ : Q — Bp satisfies p(w) =
f(w, p(w)) for each w € Q, i.e., ¢ is a random fixed point of f. |

Using similar methods, we can show the following theorems and corollary, and
we omit their proof.

Theorem 3.2. Let Br be a separable subset of a uniformly convex Banach space
X. If f:Q x Bgp — X is a semicontractive random operator and satisfies any one
of the six conditions of Theorem 3.1, then f has a random fized point.

Corollary 3.1. Let Bg be a separable subset of a uniformly convex Banach space
X, g:Qx Br — X a nonexpansive random operator, and h : Q@ x B — X a
completely continuous random operator. If f = g + h satisfies any one of the six
conditions of Theorem 3.1, then f has a random fixed point.
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Theorem 3.3. Let Br be a separable subset of a uniformly convex Banach space
X, 9:Qx Br — X a LANE random operator, and h : Q) x B — X a completely
continuous random operator. If f = g+ h satisfies any one of the six conditions of
Theorem 3.1, then f has a random fized point.

Theorem 3.4. Let Bg be a weakly compact separable closed ball of a Banach space
X, g: Qx Br — X a nonexpansive random operator, and h :  x B — X
a completely continuous random operator. If X satisfies Opial’s condition and
f = g+ h satisfies any one of the six conditions of Theorem 3.1, then f has a
random fixed point.
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