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THE LEAST CARDINAL FOR WHICH

THE BAIRE CATEGORY THEOREM FAILS

MARION SCHEEPERS

(Communicated by Andreas R. Blass)

Abstract. The least cardinal for which the Baire category theorem fails is
equal to the least cardinal for which a Ramseyan theorem fails.

The Baire category theorem states that the real line is not the union of countably
many meager (also known as first category) sets. Let cov(M) denote the least
cardinal number such that there are that many first category subsets of the real
line whose union is the entire real line. Then cov(M) is the least cardinal number
for which the Baire category theorem fails.

This cardinal number, defined in terms of topological notions, appears in many
different guises in combinatorial set theory. A long list of diverse guises of this
cardinal number is already general knowledge for set theorists; Galvin gave a
game-theoretic version (part of which is published in [4], and part of which is
unpublished—however, see [8]), A. W. Miller gave a characterization in terms of
sequences of positive integers [6], which was later given an elegant improvement
by Bartoszynski [1]. It is also known to be the least cardinal number such that
there is a set of real numbers of that cardinality which does not have Rothberger’s
property C′′. A set X of real numbers has property C′′ if, for every sequence
(Un : n = 1, 2, 3, . . . ) of open covers of X , there is a sequence (Un : n = 1, 2, 3, . . . )
such that, for each n, Un ∈ Un and {Un : n = 1, 2, 3, . . .} is a cover for X .

It seems that for the purposes of applications of set theory to other areas of
mathematics, it would be useful to have as many non-trivial characterizations of
this cardinal number as possible. In this paper we give a few more equivalent forms
of this cardinal number. To explain some of our results, we need some terminology
which is well-known in other contexts. Let κ be an infinite cardinal number which
will be fixed for the duration of the paper.

A collection of subsets of κ is said to be a cover of κ if its union is equal to κ. We
shall be interested in countable covers of κ. A cover of κ is said to be an ω-cover
if it is countably infinite, κ itself is not a member of the cover, and if there is for
every finite subset of κ an element of this cover which contains it. We shall let the
symbol Ω denote the collection of ω-covers of κ.

Borrowing from Ramsey theory (see Section 8 of [3]), we shall use the symbol

Ω→ (Ω)nk
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to denote that: for all positive integers n and k, for every ω-cover U of κ, and for
every function

f : [U ]n → {1, . . . , k}
there is an ω-cover V ⊆ U of κ such that f restricted to [V ]n is constant.

Theorem 1. The following statements are equivalent :

1. κ < cov(M).
2. for all positive integers k and n, Ω→ (Ω)nk .

The paper is organized so that we prove Theorem 1 in the first section. A few
remarks regarding extensions of what we discussed here constitute the second and
final section of the paper.

1. The proof of Theorem 1

There is a natural duality between the theory of filters on ω and the theory of
ω-covers of a set S. We make this explicit since it can be used to obtain some of
our lemmas also directly from some of Canjar’s results in [2].

Thus, let S be an infinite set and let U be an ω-cover of S. By our conventions
U is a countable set and does not have S as an element. For a finite subset F of S,
put

UF = {U ∈ U : F ⊆ U}.
Then the family {UF : F is a subset of S} is a basis for a filter on the countable set
U . The filter so generated is a free filter, because there is no element of U which
contains every finite subset of S.

Conversely, let {Us : s ∈ S} be a collection of infinite subsets of ω which is a
basis of a free filter. Then define for each n in ω the set Vn to be {s ∈ S : n ∈ Us}.
Then the collection U = {Vn : n < ω} is an ω-cover for S: for let F be a finite
subset of S. Then

⋂
s∈F Us is an infinite set since the collection generates a free

filter. Pick an n in this intersection. Then F is a subset of Vn. Moreover, since the
filter generated by {Us : s ∈ S} is a free filter, there is no n contained in each Us.
This translates to saying that S is not equal to any Vn.

Using this duality, Lemmas 2 and 3 can be obtained as direct consequences of
Canjar’s Lemma 7, as we shall indicate below. However, because of the simple and
direct involvement of cov(M) in our proofs of these two lemmas, we kept them as
part of our exposition.

Let us say that κ is a Q-point cardinal number if, for every ω-cover U of κ, and
for every partition (Pn : n = 1, 2, 3, . . . ) of U into disjoint finite subsets, there is a
subset V of U such that V is an ω-cover of κ such that, for each n, V ∩ P has at
most one element.

Lemma 2. If κ is less than cov(M), then κ is a Q-point cardinal number.

Proof. For let U be an ω-cover of X , and let (Pn : n = 1, 2, 3, . . . ) be a partition of
it into disjoint finite subsets. We may assume that each of these Pn’s is nonempty.
Endow each Pn with the discrete topology and endow the set

∏∞
n=1 Pn with the

product topology. For every nonempty finite subset F of κ, define

DF =

{
f ∈

∞∏
n=1

Pn : for each n, F * f(n)

}
.
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Then each DF is a closed, nowhere dense subset of
∏∞
n=1 Pn. As κ is less than

cov(M), we see that( ∞∏
n=1

Pn

)
\
⋃
{DF : F ∈ [κ]<ℵ0 and F 6= ∅}

is nonempty. Let f be an element of this set. Then, for each n, f(n) is an element
of Pn, and the set {f(n) : n = 1, 2, 3, . . .} is an ω-cover of X .

Here is how Lemma 2 could be obtained from Lemma 7 of Canjar’s: Let κ <
cov(M) be an infinite cardinal number, let U = (Un : n < ω) be an ω-cover of it,
and let (Pn : n < ω) be a partition of this ω-cover into disjoint finite sets. For each
α < κ set Aα = {n < ω : α ∈ Un}. Then {Aα : α < κ} is a family of κ subsets of
ω which has the finite intersection property. Define a function f : ω → ω so that
f(n) = m if Un ∈ Pm. Then f is finite-to-one. By [2], Lemma 7, choose an infinite
set A ⊂ ω such that {A} ∪ {Aα : α < κ} has the finite intersection property, and
f is one-to-one on A. Put V = {Un : n ∈ A}. Then V is an ω-cover of κ, and it
meets each Pn in at most one element.

Next, let us say that κ is a P -point cardinal number if, for each descending
sequence

U1 ⊇ U2 ⊇ · · · ⊇ Un ⊇ · · ·
of ω-covers of κ, there is an ω-cover V of κ such that for each n the set V\Un is
finite.

Lemma 3. If κ is less than cov(M), then κ is a P -point cardinal number.

Proof. U1 is a countable set. For each n enumerate Un bijectively as (Unm : m =
1, 2, 3, . . . ). Define, for each finite nonempty subset F of κ, the set

DF = {f ∈ NN : for each n, F * Unf(n)}.

Then each DF is a closed, nowhere dense subset of NN, and so there is an element
of NN not in

⋃
{DF : F ⊆ κ nonempty and finite}. Letting f be such an element

we see that V = {Unf(n) : n = 1, 2, 3, . . .} is an ω-cover of κ, and has the required

properties.

Here is how this lemma could also be obtained from Canjar’s Lemma 7: Let κ <
cov(M) as well as a descending sequence U1 ⊃ · · · ⊃ Un ⊃ · · · of ω-covers of κ be
given. Enumerate U1 bijectively as (Un : n < ω). For each n and each α < κ define
Anα = {m < ω : α ∈ Um and Um ∈ Un}. Then the family {Anα : 0 < n < ω,α < κ} of
infinite subsets of ω has the finite intersection property. Define a function f : ω → ω
such that for each n we have f(n) = m if Un ∈ Um\Um+1. Then select, by [2],
Lemma 7, an infinite subset A of ω such that {A} ∪ {Anα : n < ω, α < κ} has the
finite intersection property and on A either f is bounded, or else f is one-to-one.

Case 1: f is bounded. Let κ be an upper bound for f . Then the ω-cover
V = {Un : n ∈ A} is contained in U1\Uk+1. But A ∩ Ak+1

α is non-empty, meaning
that V ∩ Uk+1 is non-empty. This contradiction shows that Case 1 doesn’t occur.

Case 2: f is one-to-one. Then the ω-cover V = {Un : n ∈ A} has the property
that, for each n,V\Un has at most n elements, and we are done.

We are now ready to prove the implication 1⇒ 2 of Theorem 1. Assume that κ
is less than cov(M), let U be an ω-cover of κ, and let f : [U ]2 → {0, 1} be given.
Enumerate U bijectively as (Un : n = 1, 2, 3 . . . ).
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Define sequences (in : n = 1, 2, 3, . . . ) (of 0’s and 1’s) and U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃
· · · of ω-covers of κ such that

1. U1 = {V ∈ U : f({U1, V }) = i1}, and
2. Un+1 = {V ∈ Un : f({Un+1, V }) = in+1} for each n.

Then, choose an ω-cover V ⊂ U1 such that for each n the set V\Un+1 is finite. Put
V1 = V\U2, and for each n greater than 1 put Vn = V\(Un+1 ∪ V1 ∪ · · · ∪ Vn−1).
We consider two cases:

1. either
⋂∞
n=1 Un is an ω-cover of κ,

2. or else
⋃∞
n=1 Vn is an ω-cover of κ.

In the first case, write W =
⋂∞
n=1 Un and list W as (Unk : k = 1, 2, 3, . . . ), using

the enumeration which we have fixed earlier on, so that n1 < n2 < · · · < nk < · · · .
Now note that for each k, either ink = 0, or else ink = 1. Partition W into two
disjoint pieces according to the values of the ink ’s; one of these is an ω-cover of κ.
We may assume that the one which is an ω-cover of κ has ink = 1 for each k. Again,
this part of W may now be named W, and we may assume that the enumeration
(Unk : k = 1, 2, 3, . . . ) from above enumerates this W.

Then choose l1 < l2 < · · · < ln < · · · such that

• l1 = n1, and
• ln+1 > ln is so large that if nj ≤ ln and nk ≥ ln+1, then Unk ∈ Unj .

Then, set:

E = {Unj : for an even k, lk ≤ nj < lk+1}
and

O = {Unj : for an odd k, lk ≤ nj < lk+1}.
As W is an ω-cover of κ, and as it is the union of the two disjoint sets E and O, at
least one of these sets is an ω-cover, say E (the argument for O proceeds similarly).

Put Ek = {Unj : l2·k ≤ nj < l2·k+1}. Then this partitions the ω-cover E of
κ into pairwise disjoint finite sets. Let S be a subset of E which is an ω-cover
of κ, and meets each Ek in at most one point. Then S is a subset of U which is
monochromatic for the coloring f , and is an ω-cover of κ. This gives the argument
in the first case.

In the second case,
⋃∞
n=1 Vn is an ω-cover of κ; call it W. Now for each n, if m

is larger than n, then Vm is a subset of Un. Choose k1 < k2 < k3 < · · · < kn < · · ·
such that for each n, if Ui is an element of Vn, then i ≤ kn. Then choose l1 < l2 <
· · · ln < · · · such that for each n:

1. if j is at least as large as l1, then Vj ⊂ Uk1 , and if Ui is in Vj , then i < k1,
2. if j is at least as large as ln+1, then Vj ⊆ Ukln , and if Ui is in Vj , then i is

larger than kln , and
3. k1 + · · ·+ kln + l1 + · · ·+ ln < ln+1.

Then define g : N → N so that g(1) = l1 and, for each n, g(n + 1) > g(n) is so
large that if j ≥ g(n+ 1) and Ui is in Vj , then Ui is in Ukg(n)

and i > kg(n).
We now put P1 = V1∪· · ·∪Vg(1)−1, and, for each n, Pn+1 = Vg(n)∪· · ·∪Vg(n+1)−1.

Define E =
⋃∞
n=1 P2·n and O =

⋃∞
n=1 P2·n−1. Then E or O is an ω-cover of κ; we

may assume that E is an ω-cover (the argument for O is similar).
The sequence (P2·n : n = 1, 2, 3, . . . ) is a partition of the ω-cover E of κ. Since

κ is a Q-point cardinal number, we find a subset S of E which is an ω-cover of κ,
and which meets each P2·n in at most one point.
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For each n, let Vn be the element of S in P2·n. Then Vn is an element of Vjn ,
where now, for each n, g(2 · n− 1) ≤ jn < g(2 · n). We may further write Vn = Uin
where Uin ∈ Vjn . By the choice of g we then have:

1. Uin ∈ Ukg(2·n−1)
and in > kg(2·n−1), and

2. in < kjn < kg(2·n) < kg(2·(n+1)−1).

Consequently we have kg(2·n−1) < in < kg(2·(n+1)−1). But then we have that,
for each m > n, Uim ∈ Uin . Then we extract from {Uim : m = 1, 2, 3, . . .} a
homogeneous set for f as before.

We have now shown that 1 of Theorem 1 implies the partition relation

Ω→ (Ω)2
2.(1)

This partition relation by itself is already enough to imply 1 of the theorem. In
the “Remarks” section below I’ll outline my original proof of this fact. Professor
Andreas Blass pointed out that there is a more efficient proof of 2⇒ 1 which uses
the methods of [2], Lemma 10, and Bartoszynski’s characterization [1] of cov(M).
Here is the argument given by Blass, slightly paraphrased:

Suppose that statement 2 of Theorem 1 holds. Consider an arbitrary family H
of κ functions from ω to ω. We seek a single function that agrees with each of them
somewhere. Proceed as in Canjar’s proof of his Lemma 10 to define a family F of
countable sets as follows:

1. First, let (Bn : n < ω) be a partition of ω such that for each n we have
|Bn| = n2. Then, for each n, let (Lnk : k = 1, 2, . . . , n) be a list of n pairwise
disjoint n-element subsets of Bn. For each n we let Xn be the set of functions
from Bn to ω, and then we let X be the union of the Xn’s.

2. Next, let N : X → ω be the function which is defined so that

N(x) = n⇔ x ∈ Xn.

3. For h ∈ H define the set Ah to be the set of p in X such that for each k

between 1 and N(p), there is a y in L
N(p)
k at which h(y) is equal to p(y).

Then we put

F = {Ah : h ∈ H} ∪ {{p ∈ X : N(p) > j} : j < ω}.
Canjar shows that F has the finite intersection property. Moreover, F has cardi-
nality no larger than κ. Now F is a subset of the powerset of X . Putting, for each
x in X , Sx = {B ∈ F : x ∈ B}, we get an ω-cover {Sx : x ∈ X} of F . Define a
partition

Φ: [{Sx : x ∈ X}]2 → {0, 1}
so that

Φ({Sx, Sy}) =

{
0 if there is an n with x, y ∈ Xn,

1 otherwise.

By the partition hypothesis, there is an i ∈ {0, 1} and a subset E of X such that
{Sx : x ∈ E} is an ω-cover of X , and is homogeneous of color i for Φ.

We first see that i = 1: If on the contrary we had i = 0, then we would have
some n, fixed for the remainder of the argument, such that E ⊆ Xn. This would
mean that for j > n we have E ∩ {p ∈ X : N(p) > j} = ∅, so that no element of
{Sx : x ∈ E} would cover any of these elements of F—this contradicts the fact that
{Sx : x ∈ E} is a cover of F .
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Now that we have established that i = 1, we see that for each n, |E ∩Xn| ≤ 1.
For each n for which this is possible, let qn denote the element of E ∩ Xn. Then
define g : ω → ω so that for each relevant n, if b is in the domain of qn, then
g(b) = qn(b). We shall see that g is as required.

Let h be an element of H. Since we have an ω-cover of F , we see that for every
finite subset G of H, there is an element of E belonging to the intersection

⋂
g∈GAg.

In particular, there is an element of E belonging to Ah, say qn (in the choice of
indices made above). By the definition of Ah, there is an element x in the domain
of qn where h(x) = qn(x). But then this x is a point where h and g agree.

2. Remarks

In the original proof of 2 ⇒ 1 of Theorem 1, I argued as follows: 2 implies
that κ is both a P -point cardinal number and a Q-point cardinal number. This
attribute of a cardinal number κ then implies that every set of real numbers having
cardinality κ has Rothberger’s property C′′. But then recall the fact that cov(M)
is the least cardinality of a set of real numbers which does not have Rothberger’s
property C′′.

This particular proof, though longer than the one given by Blass, had the other
virtue that in order to prove the full partition relation stated in 2 of Theorem 1 (i.e.
for all finite superscripts and subscripts), one could proceed as in the usual proof
of Ramsey’s theorem where one inducts on the superscripts and subscripts, and
uses the proven instances of the partition relations. In this inductive proof for the
partition relation for ω-covers, one at some point uses the P -point and the Q-point
properties as well as the already established instances of the partition relation to
extract a homogeneous ω-cover.

Blass also pointed out that the theorem could be reformulated as a theorem
regarding small filter-bases (see 6 below). The proof of 2 ⇒ 1 of the reformulated
version would go even smoother, since now we don’t have to translate back and forth
between the filter terminology and the omega-cover terminology. In summary, then,
using the methods of this paper and Canjar’s one finds the following statements
are equivalent:

Theorem. For an infinite cardinal number κ, the following are equivalent :

1. κ < cov(M).
2. Ω→ (Ω)2

2.
3. κ is a P -point cardinal number and a Q-point cardinal number.
4. For all positive integers m and n, Ω→ (Ω)nm.
5. Ω→ (Ω, 4)3.
6. For every κ-generated nontrivial filter F on ω and every partition of [ω]n into
k pieces, there is a homogeneous set that meets every set in F .

One can generalize from the situation of cardinal numbers to topological spaces:
Instead of considering ω-covers by arbitrary subsets, consider ω-covers by open
subsets of the space. In the specific situation where the space is a subspace of
the real line, one finds a class of subsets of the real line which is, in general, a
proper subcollection of the C′′-sets of Rothberger, and which is characterized by
the partition relation of Theorem 1 for such ω-covers. These matters are pursued
in the papers [5] and [9].
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