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BOHR ALMOST PERIODIC MAPS

INTO K(π, 1) SPACES
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(Communicated by Peter Li)

Abstract. Let X be a locally finite simplicial complex of finite topological
dimension. Assume further that X is a K(π, 1) space where π is a group
whose only abelian subgroups are infinite cyclic. We prove that a Bohr almost
periodic map of the real line into X is uniformly homotopic to a periodic map.
As a consequence we show that a Bohr almost periodic geodesic on a compact
Riemannian manifold of everywhere negative curvature is necessarily periodic.

If X is a compact metric space, a map f of the real line into X is said to be Bohr
almost periodic provided for any ε > 0 the set of all t0 such that ρ(f(t+t0), f(t)) < ε
for all t has the property that it intersects every sufficiently large interval. Since
the uniformity on a compact Hausdorff space is unique, the question of whether f is
Bohr almost periodic depends only on the topology of X and not on the particular
metric we use. If X is any metric space and we do not assume compactness, we say
that f is Bohr almost periodic provided the closure of the image of f is compact
and f , considered as a map into this closure, is Bohr almost periodic.

If X is imbedded as a closed subset of some Euclidean space Rn and f(t) =
(x1(t), . . . , xn(t)), then f is Bohr almost periodic if and only if each xi(t) is Bohr
almost periodic. A real valued function is Bohr almost periodic if and only if
it can be approximated arbitrarily closely by a trigonometric polynomial. We can
associate with each real valued Bohr almost periodic function a Fourier series, which
determines the function.

In what follows X will always be the underlying space of a locally finite simplicial
complex of finite topological dimension. Finite topological dimension is taken to
imply that the space is separable and metrizable; for a locally finite simplicial
complex it amounts to assuming that there are only countably many simplices and
these are of bounded dimension.

In addition we will assume that X is a K(π, 1) space, where π is a group whose
only abelian subgroups are infinite cyclic. If X were a compact Riemannian man-
ifold whose sectional curvature was everywhere negative it would satisfy all these
conditions [2]. In particular a compact surface of negative Euler characteristic sat-
isfies these conditions, since it admits a Riemannian metric of constant negative
curvature.

Let f be a Bohr almost periodic map of the real line into such a K(π, 1) space
X . We are going to prove the following:
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Theorem 1. There exists a uniformly continuous map F of R1× [0, 1] into X such
that

(1) F (t, 0) = f(t) for all t,
(2) F (t, 1) is periodic of some period P .

As a consequence of this result we will show that if X is a compact Riemann-
ian manifold of everywhere negative sectional curvature, any Bohr almost periodic
geodesic on X is actually periodic.

In case X is a compact surface of negative Euler characteristic this has been
known for a long time [1, 3]. As explained in the sources cited, one can intuitively
look upon the result in the following way: Suppose a man takes his dog for a walk
in the space X and the dog travels an almost periodic path. If the dog is led by
a man using a leash of bounded length the man can lead the dog by this leash
provided he travels a suitable periodic path.

If X is a K(π, 1) space of the kind described above, its one point compactification
is of finite topological dimension and therefore can be imbedded in Sn for some n.
Thus X can be imbedded as a closed set in n-dimensional Euclidean space Rn

for some n. We let i denote such an imbedding. Moreover, X is an absolute
neighborhood retract. We choose an open set O containing i(X) and let R be a
retraction of O onto X .

If X and Y are any two metric spaces and f1 and f2 are two continuous maps
of X into Y , we will say that f1 and f2 are uniformly homotopic provided there
exists a uniformly continuous map of X × [0, 1] into Y such that h(x, 0) = f1(x)
and h(x, 1) = f2(x). [Assuming ρ is a metric on X we put a metric ρ on X × [0, 1]
by defining ρ((x1, t1), (x2, t2)) to equal ρ(x1, x2) + |t1 − t2|.] Uniform homotopy of
maps between metric spaces is an equivalence relation and the set of such equiv-
alence classes of maps forms a category. If X is compact the uniform homotopy
equivalence classes of maps of X into Y are just the ordinary homotopy classes of
maps. Moreover if f : X → Y is uniformly continuous and g1 and g2 are uniformly
homotopic maps of Y into Z, then g1 ◦ f is uniformly homotopic to g2 ◦ f .

Now suppose f is a Bohr almost periodic function of the real line into a K(π, 1)
space X of the type described in the introduction. We are going to show first that
there is a homomorphism λ1 of the real line into a compact connected metrizable
abelian group M∗ and a map p1 of M∗ into X such that f = p1 ◦ λ. Then we
will show that there is a continuous homomorphism λ2 of M∗ onto a toral group
M∗/Aα0 (where Aα0 will be a closed subgroup of M∗) and a continuous function
p2 of M∗/Aα0 into X such that p1 and p2 ◦λ2 are uniformly homotopic. Finally we
will get a continuous homomorphism λ3 of M∗/Aα0 into the multiplicative group
S1 of complex numbers of absolute value one and a continuous map p3 of S1 into X
such that p2 and p3 ◦λ3 are uniformly homotopic. It will follow that f is uniformly
homotopic to p3◦λ3◦λ2◦λ1. Since λ3◦λ2◦λ1 is a continuous homomorphism of the
real line into the multiplicative group of complex numbers of absolute value one,
there will have to be a complex number ω such that λ3(λ2(λ1(t))) = eiωt. Thus we
will know that f(t) is uniformly homotopic to p3(eiωt). Since p3(eiωt) is periodic,
this will prove our theorem.

First of all let x1, . . . , xn be the coordinates in the Euclidean space Rn in which
X is imbedded. Each Bohr almost periodic real valued function xi ◦ i ◦ f has
associated with it a Fourier series,

∑
aiαe

iωαt. Let M be the smallest subgroup of
the real line containing all the ωα. Consider the Pontrjagin dual M∗ of the discrete
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group M ; that is, the collection of all homomorphisms of M into the multiplicative
group S1 of complex numbers of absolute value one. This is a group under pointwise
multiplication of functions; one puts the compact open topology on it making it a
compact abelian group. For each t ∈ R1, the map sending ω ∈ M into eiωt is a
homomorphism of M into S1; thus we get a function from R1 into M∗. This map
is a continuous homomorphism λ1 of the additive group R1 onto a dense subgroup
of M∗. As is well known, when one makes this standard construction there exists
a unique set of continuous functions x1, . . . , xn of M∗ into R1 such that for each i,
xi(λ1(t)) = xi(i(f(t))).

Since M∗ is a compact connected abelian group there exist arbitrarily small
closed subgroups Aα such that the quotient groups M∗/Aα are tori.

For each i and any α, let xi(g) be
∫
Aα

xi(g+h) dµα(h) where µα is the normalized
Haar measure on Aα. If we take Aα to lie in a sufficiently small neighborhood of the
identity in M∗ we can make each xi(g) approximate as closely as we like to xi(g).
By making this approximation sufficiently close we can ensure that the function
sending g ∈M∗ into (x1(g), . . . , xn(g)) in Rn has an image lying in the open set O
which retracts via R onto i(X). This is so because the image of the map sending
g ∈M∗ into (xi(g), . . . , xn(g)) is a compact subset of i(X).

Pick α0 so that for each g ∈M∗ not only does (x1(g), . . . , xn(g)) lie in O but so
that the line segment joining it to (x1(g), . . . , xn(g)) lies in O.

Since each function x1(g), . . . , xn(g) is constant on cosets modAα0 , there exist
unique continuous functions y1, · · · , yn on M∗/Aα0 such that if λ2 is the natural
homomorphism of M∗ onto M∗/Aα0 , then for each i and each g ∈ M∗, xi(g) =
yi(λ2(g)). Now let G(g, s) for g ∈ M∗ and s ∈ [0, 1] be defined by G(g, s) =
R((1− s)x1(g) + sx1(g), . . . , (1− s)xn(g) + Sxn(g)) where R is the retraction of O
onto X . Then G(g, 0) = R(x1(g), . . . , xn(g)). Let R(x1(g), . . . , xn(g)) be denoted
by p1(g). Then p1 ◦ λ1 equals f . In addition G(g, 1) = R(x1(g), . . . , xn(g)) =
R(yi(λ2(g))). Let the function sending g ∈ M∗/Aα0 into R(yi(g)) be denoted by
p2, so that G(g, 1) = p2(λ2(g)). Thus p1 is uniformly homotopic to p2 ◦ λ2 and
f equals p1 ◦ λ1. To complete our proof we need only show that there exist a
continuous homomorphism λ3 of M∗/Aα0 into S1 and a continuous function p3 of
S1 into X such that p3 ◦ λ3 is homotopic (and therefore uniformly homotopic) to
p2.

We are assuming that the fundamental group π of the K(π, 1) space X has
as its only commutative subgroups infinite cyclic groups. Therefore, if e is the
identity element of M∗/Aα0 , the map of π1(M∗/Aα0 , e) into π1(X, p2(e)) induced
by p2 can be factored through a homomorphism of π1(M∗/Aα0 , e) into Z, the
additive group of the integers. We can identify Z with π1(S1, 1), and since S1

is a K(Z, 1) space we can realize this homomorphism as that which is induced
by a suitable continuous map k of (M∗/Aα0 , e) into (S1, 1). However it is known
that every map of a compact abelian group into the multiplicative group S1 is
homotopic to a continuous homomorphism, so our homomorphism of π1(M∗/Aα0 , e)
into π1(S1, 1) is that induced by some continuous homomorphism λ3 ofM∗/Aα0 into
S1. Thus there is a homomorphism ρ of π1(S1, 1) into π1(X, p2(e)) such that the
homomorphism of π1(M∗/Aα0 , e) into π1(X, p2(e)) induced by p2 is the composition
of the homomorphism of π1(M∗/Aα0 , e) into π1(S1, 1) induced by λ3 with ρ. Since
X is a K(π, 1) space, there is a continuous map p3 of (S1, 1) into (X, p2(e)) that
induces the homomorphism ρ. Then p3 ◦ λ3 induces the same homomorphism of
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fundamental groups as p2; since X is a K(π, 1) space these maps are homotopic.
This concludes the proof of our theorem.

We can get the conclusion of our theorem for certain differentiable manifolds
with boundary. For any such manifold M form its double; that is, let M1 = {(p, 1)}
(p ∈ M) and M2 = {(p, 2)} (p ∈ M) and form the differentiable manifold N from
M1 and M2 by identifying (p, 1) with (p, 2) whenever p belongs to the boundary
of M . Let d be the diffeomorphism of N onto itself sending (p, 1) to (p, 2). We
can put a complete metric on N and we will get one that is invariant under d by
averaging such a metric with that induced by d.

It is easy to see that if N is a K(π, 1) space where π is a group whose only
abelian subgroups are infinitely cyclic, then the conclusion of our theorem holds for
M . In fact let p the projection of N onto M1 sending (p, i) to (p, 1) for i = 1, 2.
If f is a Bohr almost periodic function of the real line into M1, then there is a
uniform homotopy H of f considered as a map of the real line into N to a periodic
map of the real line into N . Then since p is uniformly continuous p ◦ H gives a
uniform homotopy of f in M1 to a periodic map of the real line into M1. Since
M1 is homeomorphic to M , we are done. This is the method indicated in [1] for
getting the result of our theorem for regions in the plane gotten by punching two
or more holes in the interior of a closed disc. (In case there is just one hole the
result follows by another argument.)

Let us now suppose that X is a compact Riemannian manifold of everywhere
negative sectional curvature. As mentioned in the introduction, X must then be a
K(π, 1) space of the type we are considering.

Theorem 2. Any Bohr almost periodic geodesic in X must be periodic.

Proof. Let f(t) be a Bohr almost periodic geodesic; then f(t) is uniformly homo-
topic to some periodic function g(t). However it is known that any closed curve on
X is either homotopic to a constant map or freely homotopic to a unique closed
geodesic. Thus there exists a uniformly continuous function F from R1 × [0, 1] to
X such that F (t, 0) = f(t) and F (t, 1) parametrizes a closed geodesic at a constant

rate of speed or else is constant. We can lift F to a map F̃ of R1× [0, 1] into the uni-

versal covering space X̃ of X . The Riemannian metric on X can be lifted uniquely

to a Riemannian metric on X̃. The functions F̃ (t, 0) and F̃ (t, 1) will necessarily

describe geodesics. (This is so because F̃ (t, 1) cannot be a constant map. In fact,
as we will show below, there is a fixed constant which is an upper bound for the

distance in X̃ between F̃ (t, 0) and F̃ (t, 1). Thus if F̃ (t, 1) were constant, F̃ (t, 0)

would be a geodesic that stayed in a bounded subset of X̃. However no geodesic
in the covering space of a compact Riemannian manifold of everywhere negative
sectional curvature can behave in this way.)

There exists an r > 0 such that for any x ∈ X , the open ball Brx of radius r

about x has the property that its inverse image in X̃ fibers trivially over Brx with
a discrete fiber. We can cover X by a finite number B1, . . . , Bk of such open balls
of radius r. If n is an integer so large that 1

n is less than the Lebesgue number of

this covering, then any connected set in X of diameter less than 1
n must lie in one

of the Bi, so any lifting of this set to X̃ must lie in one component of the inverse

image of this Bi. However each component of the inverse image of Bi in X̃ gets
mapped isometrically onto Bi. Thus any two points in the lifting of our connected

set are within a distance ≤ 2r in X̃.
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Since F is uniformly continuous we can find an integer m so that if |s1−s2| ≤ 1
m

the distance in X from F (t, s1) to F (t, s2) is less than 1
n for any t.

Then the distance from F̃ (t, 0) to F̃ (t, 1) in X̃ must be less than or equal to
2mr. Thus we have two geodesics in the covering space of a compact Riemannian
manifold of everywhere negative sectional curvature that are always a bounded
distance apart. It is known [4] that this implies that they must be the same geodesic.
This concludes the proof of our theorem.

If a Bohr almost periodic map f of the real line into a compact Riemannian
manifold of everywhere negative sectional curvature were uniformly homotopic to
each of two closed geodesics, these two geodesics would be uniformly homotopic to
each other. By the same argument as above, the liftings of these two geodesics to

X̃ would stay a bounded distance apart for all time, so that apart from a possible
time lag in their relative parametrizations they would be the same geodesic.
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