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ABSTRACT. Let A be a finitely generated commutative domain over an alge-
braically closed field k, o an algebra endomorphism of A, and é§ a o-derivation
of A. Then GKdim(A[z,0,6]) = GKdim(A) + 1 if and only if o is locally
algebraic in the sense that every finite dimensional subspace of A is contained
in a finite dimensional o-stable subspace.

Similarly, if F' is a finitely generated field over k, o a k-endomorphism of
F, and é a o-derivation of F', then GKdim(F[z, 0, §]) = GKdim(F') + 1 if and
only if o is an automorphism of finite order.

1. THEOREMS

Throughout this paper, k denotes an algebraically closed field and A will be a
k-algebra. Let o be a k-algebra endomorphism of A. Then the algebra Alz, o]
is a polynomial extension of A subject to the relation ax = zo(a) for all a € A.
If o is an automorphism, then z is a regular normal elment in A[z,o] and the
algebra A[z,z71, 0] is defined by inverting x in A[r,0]. Let GKdim denote the
Gelfand-Kirillov dimension. The definition and basic properties of GKdim can be
found in [KL]. A finite dimensional subspace of A containing the identity 1 is
called a subframe of A. A subframe (or a subspace) V of A is said to be o-stable if
o(V) Cc V. We call o locally algebraic if every subframe of A is contained in a o-
stable subframe. It is not hard to prove that if o is a locally algebraic automorphism,
then GKdim(A[z, 27, 0]) = GKdim(A) + 1 [LMO, Prop. 1]. In this paper we will
prove a partial converse when A is a commutative domain.

Theorem 1.1. Let A be a commutative domain over k such that the fraction field

Q(A) is finitely generated as a field, and let o be an endomorphism of A. Then the
following statements are equivalent.

(a) GKdim(Alz,o]) < GKdim(A) + 2.

)

) GKdim(A[z, o]) = GKdim(A) + 1.

(b) GKdim(A[z,z7 !, 0]) = GKdim(A) + 1 if o is an automorphism.
)

o is locally algebraic.
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If moreover A is a field, then (a)—(c) are equivalent to the following.
(d) o is an automorphism of finite order.

The only difficult step is the implication from (a) to (c¢). This implication will fail
if either (i) A is not a domain or (ii) A is not commutative (see Examples in §5). A
related example was given by I. Musson [Mu] which shows that there is a non-prime
PI algebra A and an algebra automorphism o of A such that there are no non-trivial
o-stable subspaces of A and that GKdim(A[z, 71, 0]) = GKdim(A) + 1 = 3. Tt is
unknown if Theorem 1.1 holds for prime PI algebras.

Let 6 be a o-derivation of A, i.e., 6(ab) = §(a)o(b) + ad(b) for every a,b € A.
Then the algebra A[z, o, 6] is a polynomial extension of A satisfying the relation
ax = zo(a) + 6(a) for all a € A (see [MR, Sec. 1.2]). A subspace V of A is called
6-stable if 6(V') C V. We will prove the following analogue to Theorem 1.1.

Theorem 1.2. Let A be a commutative domain over k, o an algebra endomorphism
of A, and 6 a o-derivation of A.
(1) If A is a finitely generated algebra, then the following statements are equiv-
alent:
(a) GKdim(A[z,0,6]) < GKdim(A4) + 2.
(b) GKdim(A[z,0,6]) = GKdim(A4) + 1.
(¢) o is locally algebraic.
(2) If A is a finitely generated field, then each of (a)—(c) is equivalent to the
following:
(d) o is an automorphism of finite order.

In §2 we will prove a lemma which will be used several times in later sections.
Section 3 is devoted to the proof of Theorem 1.1, and §4 contains the proof of
Theorem 1.2. In §5 we will give some examples which show that the hypotheses in
Theorems 1.1 and 1.2 are necessary.

2. A LEMMA

The lemma we will prove is essentially contained in [Zh, Sec. 6]. Let G be an
ordered semigroup with unit e. Familiar examples of ordered (semi)groups are N!
and Z! for I > 1. Let A be an algebra with a filtration {F,|n € G} of subspaces of
A. We denote by F.,, the subspace > F,,. Suppose the filtration satisfies the
following conditions:

(fl) F,, C F, for all m < n in G;

(f2) F,F, C Fpy, for all m and n in G;

(f3) A= UneG(Fn —Fen);

(f4) 1€ F. — F..
Then A is called a G-filtered algebra. The associated graded algebra is defined to
be gr(A) = @,,cq Fn/F<n with the k-linear multiplication determined by

(Q+F<m>(b+F<n> = ab+F<nm

(see [KL, page 73] for the case when G = Z). We define a map v : A — gr(A) by
v(a) = a+ Fey, for all a € F,, — F.,,. This map is called a leading-term map and
it is easy to see that

(11) v(t) =t for all t € k;

(12) v(a) # 0 for all a # 0;

m<n
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(13) v(a)v(b) = v(ab) or v(a)v(b) =0 for all a,b € A.
If the associated graded algebra gr(A) is a domain, then v(a)v(b) = v(ab) for all
a,be A

Obvious examples of filtered algebras are graded algebras. A (G-graded alge-
bra A = @,.; Ai can be viewed naturally as a filtered algebra by letting F;,, =
D,,<, Am. Then {F,|n € G} is a filtration and gr(A) = A. The leading-term map
is u(&) = ap, if a = an, +an,+ - +an, with 0 # a,, € Ap, andny <ng <--- < ny.

Some N-filtered algebras can be characterized in the following way. Let A be
an algebra generated by a subframe V. Then {F; = V%|i > 0} (where V% =
k) is an N-filtration of A and (f1,2,3,4) hold. The associated graded algebra is
gr(A) := @, V/Vi~! and the leading-term map from A to gr(A) is defined by
viar— a+ Vil forall a € Vi — Vi~l Familiar examples are the Weyl algebras
and universal enveloping algebras of finite dimensional Lie algebras. In these two
examples, the associated graded algebras are domains.

Another example of an N-filtered algebra is A[z, o, §] where ¢ is an endomorphism
of A and 6 is a o-derivation of A. Let F,, = {>_,_, z%a;|a; € A}. Then {F,} satisfies
(f1,2,3,4) and gr(A[z,0,6]) = Az, o]. N

The following lemma lists some basic properties of the leading-term map. For
every subspace V of A, we define v(V) = > _., kv(z). Hence v(V) is a graded
subspace of gr(A).

zeV

Lemma 2.1. Let A be a G-filtered algebra and let v be the leading-term map from
A to gr(A).
(1) v(Va) O v(V)r(
(2) v(V+W) D
(3) v(VW) D v(V)v
(4) dim(W) = dim(v
space.
(5) dim(VW) > dim(v(V)v(W)) for all V,W C A.

(6) dim(W™) > dim((v(W))™) for allV C A and all n > 1.
(7) GKdim(A) > GKdim(gr(A)).

Proof. (1) v(Va) =3, kv(va) DY kv(v)v(a) = (3, kv(v))v(a) =v(V)v(a).
(2) Since V.CV+ W, v(V) Cv(V + W) and it follows that

S

) foralla € A and V C A.

)+ v(W) for all VW C A.

W) for all V,W C A.

W) for allV C A where dim is the dimension of a k-vector

AA<

v(V)+v(W) Ccv(V+W).

(3) Write VW =" Vw, then (3) follows from (1) and (2).

(4) Let W,, =W NF, and W.,, =W N F., for all n € G. Then W,, and W.,,
are subspaces of W and by the definition of v we see that v(W) = @,, W, /W<p.
Hence

dim(v(W)) =3 " (dim(W,) — dim(W<,,)) = dim W.

n

(5) is a consequence of (3) and (4).

(6) is a consequence of (5) by induction.

(7) Let V be a subframe of gr(A). There is a subframe W of A such that
v(W) > V. (Recall that v(W) = > _y kv(z).) Then the statement follows from
(6) and the definition of GKdim. |
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3. PROOF OF THEOREM 1.1

We divide the proof of Theorem 1.1 into two parts: Theorem 3.2 and Proposition
3.3.

Let A be a commutative algebra and let V' be a subframe of A. Applying [Ma,
13.2] to the graded algebra B = €P,,~, V"/V" !, dim(V") is a polynomial of n with
rational coefficients for n > 0. If A is a commutative domain, we will show that
the leading coefficient of the polynomial dim(V™) is “at least linearly dependent on
dim(V')” (the precise definition will be given below). Since the leading coefficient
of the growth polynomial is related to the multiplicity [MR, 8.4.7], we make the
following definition. Let A be an algebra of GKdim d. We say A satisfies the
sensitive multiplicity condition (or SMC) if there is a finite dimensional subspace
Vo of A and a constant ¢ > 0 such that if W is a finite dimensional subspace
containing Vpa for some regular element a € A, then

(SMC) dim(W™) > cdim(W)n?

for all n. In this case we say A satisfies SM (Vp, ¢,d). A key step in proving Theorem
1.1 is to show that finitely generated commutative domains satisfy SMC [Theorem
3.2]. On the other hand, Examples 5.2 and 5.3 show that semiprime commutative
algebras and noncommutative noetherian domains may not satisfy SMC.

By using Lemma 2.1(1),(4),(6) and the definition of SM (Vp, ¢, d), the proof of
Lemma 3.1 is straightforward and is left to the reader. Lemma 3.1 will be used in
the proofs of Theorem 3.2 and Proposition 5.4.

Lemma 3.1. (1) Let G be an ordered semigroup and let A be a (noncommutative)
G-filtered algebra such that the associated graded algebra gr(A) is a domain and
that GKdim(gr(A)) = GKdim(A) = d. If gr(A) satisfies SM(v(Vp), ¢,d), then A
satisfies SM (Vp, ¢, d).

(2) Let A be a commutative domain and let Q(A) be the fraction field of A.
Then Q(A) satisfies SM (Vy, ¢, d) if and only if A satisfies SM(Vyy, ¢, d) for some
0 #y € A such that Vyy C A. O

Theorem 3.2. If A is a commutative domain such that the fraction field Q(A) is
finitely generated as a field, then A satisfies SMC.

Proof. First we prove the following statement: If R is a commutative domain sat-
isfying SMC, then R|x] satisfies SMC. Note that GKdim(R[z]) = GKdim(R)+ 1 =
d+1 [MR, 8.2.7(iii)]. Suppose now that R satisfies SM (Vp, ¢, d). For every subspace
WO D) ‘/Oya

dim(Wg) > ¢dim(Wy)n?

for all n. We will verify that R[z] satisfies SM(Vy + kz,c’,d + 1) for some ¢’ > 0.
Case 1. Let W = 25:1 aPiW; where the {p;} are increasing and suppose that

W; D Voy; for some nonzero y; € R for all i. We use induction on [ (for [ > 2) to
show that dim(W™) > ¢; dim(W)ntL If I = 2, W = 2P Wy + 2P2 W, and ps > py,



A NOTE ON GK DIMENSION OF SKEW POLYNOMIAL EXTENSIONS 367
then

dim(W™) > dim() ~ aPr ==y )
s=0

N | =

I
NE

dim(WiW3 =) = = > " [dim(Wi Wy %) + dim(W; Wy )]
s=0

w
I

Vv
| =
=~

(dim(W7) + dim(W3' %))
s=0

r . .
(use (SMC)) > §c{d1m(W1) + dim(W2)} ;:O s
d+1

> %c{dim(Wl) + dim(W,)} n

2(d+1)
- _ ¢ % d+1
BETCESY) dim(W)n"",

where we have used the inequality Y, s > 2(d1+1)n‘i+1 for d > 0. If I > 2, let

We =3, WizP" and suppose now that
dim(W?,) > ¢; dim(Wx;)n®™!

for all n where ¢; = Hence we have

W@
dim(W") > dim(WZ, @ Z(l’p“m—l)"_t(x“m)t)
t=1

> dim(W2) + ) dim(W/)

t=1

> ¢y dim(Wey)n®™ + cdim(W;) Yt

t=1

¢ dim(W;)nd+!

2(d+1)
> ¢y dim(Woy)n® + ¢; dim(W))nd™! = ¢; dim(W)nd+t,

> ¢y dim(Woy)n®+t +

Case 2. In general let W be a subspace such that W O (V + kz)y for some
y € Rlz]. By Lemma 2.1(6), we have dim(W™) > dim(v(W)"). Hence we only
need to prove that dim(v(W)") > ¢ dim(W)n?t! for all n. By Lemma 2.1(1),
v(W) > (Vo + kx)v(y). Let v(y) = axP. Then v(W) D VhazP + kaxPT!. Hence
W' = VoazPv(W)(C v(W)?) satisfies the conditions in case 1. By case 1,

dim((W")"™) > ¢; dim(W/)n®*t > ¢; dim(v(W))n®tt = ¢; dim(W)n+L.
Hence
dim(W") > dim((v(W)*)3]) > dim(W"#))

: n c
> d1m(W)[§]d+1 > 2dj_2

dim(W)nd*1,

Therefore R[z] satisfies S(Vo + kx,c’,d + 1) where ¢’ = 575 and the statement is
proved.
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It is trivial to check that k satisfies SMC with d = GKdim(k) = 0. By induction
and the statement we just proved, the polynomial algebra k[z1,--- ,xz4] satisfies
SM(Vy, ¢, d) for Vo = k+ Y0, k

Now we prove that every commutative domain A with Q(A) being finitely gen-
erated satisfies SMC.

By using Lemma 3.1(2) twice, we may assume that A is a finitely generated
commutative domain. Consider the variety Y defined by the algebra A. By [Ha,
1.5.3], there is a nonsingular point p € Y. By [Ha, 1.5.1], the local ring at the point
p, B := O, y, isregular. Hence Q(B) = Q(A) and the Krull dimension of B is equal
to the Krull dimension of A, which is also equal to the GK dimension of A [KL,
4.5]. By Lemma 3.1(2) again, we may assume that A is a regular local algebra of
Krull dimension and GK dimension d. By [Ma, 14.4], A is a Z-filtered algebra with

associated graded algebra gr(A) isomorphic to the polynomial ring k[z1,-- -, z4).
Since the polynomial algebra satisfies SMC, by Lemma 3.1(1), A satisfies SMC and
thus we have finished our proof. O

In the proof of Theorem 3.2, we used the fact that k is algebraically closed. It
is unknown if a (finitely generated) commutative domain over an arbitrary field
satisfies SMC.

Proposition 3.3. Let A be an algebra and let o be an algebra endomorphism of
A.

(1) If A is a commutative algebra satisfying SMC and if o is not locally algebraic,
then GKdim(A[z,0]) > GKdim(A) + 2.

(2) If o is locally algebraic, then GKdim(A[z, o]) = GKdim(A4) + 1.
Proof. By definition Va = 2V where V° = o(V'). For every subspace V of A, we
have

n

(VAkn)"=>" (> VhaVhog...gvh)

=0 Y ks=n—1

(33.1) =Y X AT e

where Wi = Y5~y (V)R (VT kit (V)ko,
(1) If A is commutative, we have
(332) Wai= > (VO)R(Ve hot (V)0 = (V4 VI oo o )n
> ks=n—i

If o is not locally algebraic, then there exists a y € A such that the subspace
>s>0 ko*(y) is infinite dimensional. Let V' = Vy + ky for some Vp and let W; =

V4+Vo+...+V° . Then dim(W;) > dlm(zszo ko®(y)) =i+1 for all i. By (3.3.1)
and (3.3.2), we have

(V + k)" Zme ixi(wi)"—i.
=0
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Since A satisfies SMC, say SM (Vp, ¢, d), dim(W,"~*) > cdim(W;)(n — i)?. Hence

dim(V + k)" =Y " dim(W; ") > Y edim(W;)(n — i)
1=0 1=0

ci(n —i)® > Zld%nd“.

-

Il
=]

K2

Therefore GKdim(A[z, o]) > GKdim(A) + 2.
(2) If o is locally algebraic and V is o-stable, by (3.3.1), we have dim((V+kx)") =
St o dim(V" ). This implies that GKdim(A[z, 0]) = GKdim(A) + 1. O

In general the GKdim of A[x,o] could jump by more than 2. By [MR, page
291] there is an automorphism o of A = k[y*!, 2*1] such that GKdim(A[z, o]) =
GKdim(A[z*!,0]) = co. Here {x*'} means {z,r'} (and similarly for other vari-
ables).

Proof of Theorem 1.1. By Proposition 3.3(2) (c) implies (b), and by [LMO, Prop.1]
(c) implies (b)’. Tt is trivial that (b) implies (a), (b)’ implies (a)’, and (a)’ implies
(a). Hence it remains to prove that (a) implies (c¢). But this implication is an
immediate consequence of Theorem 3.2 and Proposition 3.3(1).

Next we assume that A is a finitely generated field and show that (¢) and (d)
are equivalent. It is easy to see that (d) implies (c). Hence it remains to verify that
(c) implies (d). Now suppose that ¢ is a locally algebraic endomorphism of A. Let
V be a o-stable subframe which generates A as a field. Consider o as a k-linear
map from V to itself. Since k is algebraically closed, there are [ eigenvalues of o
where [ = dim(V'), and for an eigenvalue r, there is an eigenvector v € V such that
o(v) = rv. Since A is a field, o is injective and hence r is not zero. If r is not a root
of 1, then v ¢ k and ., ko®(tX) is infinite dimensional. This contradicts the
fact that o is locally algebraic. Hence every eigenvalue of o is a root of 1. Replacing
o by o™ for some positive integer m, we may assume that every eigenvalue of o is
1. In this case, (o —id)™ = 0 for n > I, where id is the identity map of V. If the
characteristic of k is p > 0, then

o = (id+ (o —id))?" =id”" + (o —id)*" =id
for s > 0. If the characteristic of k is 0, then o is the identity. If not, then there
is a v € V such that (0 —id)**!(v) = 0 and (o — id)*(v) # 0 for some ¢t > 0. Let
= (0 —id)'(v) and y = (0 — id)*~*(v). Hence o(z) = x and o(y) = y + . Thus
> koi(f) is infinite dimensional, a contradiction. Therefore, for any characteristic,
o™ = id as a k-linear endomorphism of V' for some n > 0. Since V generates the

field A, o is an automorphism of A of finite order. Thus we have finished our
proof. O

4. PROOF OF THEOREM 1.2

To prove Theorem 1.2 we need the following lemma which is an analogue of [KL,
3.5].

Lemma 4.1. Let A be an algebra, o an endomorphism of A, and 6 a o-derivation
of A. If every subframe W of A is contained in a o-stable subframe V' such that
the subalgebra k[V] is 6-stable, then GKdim(A[z, 0, 6]) = GKdim(A) + 1.
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Proof. We copy the proof of [KL, 3.5] with a slight modification. Every subframe
of Alz, 0, 6] is contained in (V 4 kx)® for some subframe V of A and some integer s.
Hence to compute GKdim(A[z, 0, 6]) we only need to consider subframes V + kz.
By the hypothesis, we may assume V is o-stable and the subalgebra k[V] is é-stable.
Hence 6(V)) € V™ for some fixed integer m. By induction on [ and by the fact that
V is o-stable it is easy to prove that

6(Vl) C Vl-‘rm—l
for all [ > 1. By induction on n, we have
(V4 kx)" CVP 42V 4o "V

This implies that GKdim(A[z, 0, 6]) < GKdim(A) + 1. Since Az, o,6] is a filtered
algebra with associated graded algebra A[x, ], by Proposition 3.3(2) and Lemma
2.1(7) we have GKdim(A[z, 0, 6]) > GKdim(A)+ 1. Therefore GKdim(A[z, 0, ]) =
GKdim(A) + 1. |

Proof of Theorem 1.2. (1) It is trivial that (b) implies (a).

(a) = (c) Note that A[z, 0, 6] is a filtered algebra with associated graded algebra
Alz,o]. By Lemma 2.1(7), GKdim(A[z, 0]) < GKdim(Alz, 0,6]) < GKdim(A) + 2.
By Theorem 1.1, ¢ is locally algebraic.

(c) = (b) If A is finitely generated and o is locally algebraic, then the hypothesis
of Lemma 4.1 holds. By Lemma 4.1, GKdim(A[z, ¢, 6]) = GKdim(A) + 1.

(2) Tt is trivial that (b) implies (a). As in the proof of (1), (a) implies (¢). By
the proof of Theorem 1.1, (c) is equivalent to (d). It remains to prove that (d)
implies (b). Suppose now that o is of finite order. Since A is finitely generated,
every subframe of A is contained in a o-stable subframe V = 377, kx; of A which
generates A as a field. For every j, there exist f;, g; € k[V] such that 6(z;) = fjgj_l.
Let g be the product []Z) [1}j-, 0'(g;) where g is the order of o. Then o(g) = g
and 6(z;) = fjg=" for some f; € k[V]. Hence W = V + kg~ is a o-stable
subframe of A. We claim that k[W] is é-stable. Since W is o-stable, it suffices
to prove that 6(W) C k[W]. By the definition of g, 6(V) C k[W]. Since V is
o-stable, §(k[V]) C k[W]. In particular, 6(g) € k[W]. It is easy to see that
§(g71) = —g=26(g) € k[W]. Therefore 6(W) C k[W] and the hypothesis of Lemma
4.1 holds. By Lemma 4.1, GKdim(A[z, 7, §]) = GKdim(A4) + 1. O

5. EXAMPLES

In this section we will see that not every algebra satisfies SMC. To measure in
what degree an algebra satisfies SMC, we define the following invariant. Given a
subspace Vj and positive constants ¢ and d, we say A satisfies SM(Vp, ¢, d) if for
every subspace W D Vpa for some regular element a € A,

dim(W™) > ¢dim(W)n?

for all n > 1. The growth of A with sensitive multiplicity (or SM-growth of A) is
defined to be

g(A) =sup{ d| A satisfies SM(Vj,c,d) for some Vj and c}.

By definition, g(A4) < GKdim(A). If A satisfies SMC, then g(A) = GKdim(A4). In
other words, if g(A) < GKdim(A), then A does not satisfy SMC.
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Next we will give some examples in which g(A) < GKdim(A4), and show that (a)
and (c) in Theorem 1.1 are not equivalent for these algebras. Most of the following
statements are easily checked, or follow from direct computations, thus detailed
proofs will be omitted.

Example 5.1. Let A be the finitely generated commutative algebra k[z*!, 3]/ (y?).

Then GKdim(A4) = 1 and g(A) = 0. Let o be the automorphism of A defined by

o:xr— x, x> z7! and y — zy. The subspace > ., ko*(y) is infinite

dimensional and hence ¢ is not locally algebraic. By a direct computation, we have
GKdim(A[z*!, 0]) = GKdim(A) +1 = 2.

Therefore (a) and (c¢) in Theorem 1.1 are not equivalent for this commutative alge-
bra. O

Example 5.2. Let B be the field k(t) and let « be the automorphism of B defined
by «a(t) = gt for some nonzero scalar ¢g. If ¢ is not a root of 1, then « is not of
finite order and GKdim(B[z,a]) = 3 > GKdim(B) + 1. However, g(Blz,a]) =2 =
g(B)+1.

Let A be the commutative algebra k[z, y] ® k(t). Then A is a semiprime algebra
but not a domain. It is easy to see that g(A) = g(k(¢)) = 1 and GKdim(A) =
GKdim(k[z,y]) = 2. Let o be the automorphism defined by 0|y, = id and
|k = . Then GKdim(A[z*!,0]) = 3 but ¢ is not locally algebraic. Hence (a)
and (c) in Theorem 1.1 are not equivalent for the algebra A. d

Example 5.3. Let G be the nilpotent group (y, | [y,2] = z central). Then
the group algebra k[G] is isomorphic to k[z*!,y™1][2*!, o] where o is defined by
o:xv+— xz,y — xy. By [KL, 11.10], GKdlm(k[ 1) = 4. To prove g(k[G]) <
GKdim(k[G]) we consider the subspace

V= kaiyjzs where i <m, |j| <, |s| <.
By direct computation (and of course using o), we see that
Vvt c W, = z:kxiyjzS
where |i| <m-n+ %n(n—i— D5 <1-n,ls| <1-n.
It is obvious that
dim(V) = (2m + 1)(20 + 1)?
and
dim(W,,) = (2mn + n(n + 1)1%)(2ln + 1),
If we let m go to infinity, dim(W,,) ~ 8mi*n? and dim(V) ~ 8ml?. Then dim(V") <

dim(W,,) implies that g(k[G]) < 3. Since x — 1 is a central regular element of
k[G] and k[G]/(x — 1) = k[yT!, zil], k[G] is a Z-filtered algebra with associated
graded algebra isomorphic to k[y*!, 2*!][X] [Zh, 6.3]. By using the leading-term

map, we can prove that g(k[G]) ( [y*1, 2*1][X]) = 3. Thus we conclude that
9(k[G]) = 3 < GKdim(k[G]) =

To see that (a) and (c) in Theorem 1.1 are not equivalent for A = k[G] we
consider the automorphism & of A defined by § : x — z,y —— y and z — 71 2.
Hence ) .., k6°(z) is infinite dimensional and this implies that ¢ is not locally

algebraic. It remains to prove that GKdim(A[t*?,6]) = GKdim(A)+ 1. We rewrite
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A[ttL, 6] as k[zT! yT1 t+1][zT1 o] where « is the algebra automorphism defined
by a:z+— z,y — zy,t — xt. Using formulas (3.3.1) and (3.3.2), we can check
directly that GKdim(k[z*!, y*1 t+1][2*, a]) = 5. Therefore GKdim(A[t*!, §]) =
GKdim(A) + 1 but 6 is not locally algebraic. Finally it can also be verified that
g(KIGIIE*, 8]) = 4 = g(K[G)) + 1. .

Though we can not expect Theorems 1.1, 1.2 and 3.2 hold for an arbitrary
noncommutative domain, we can still try to prove a similar result for some special
noncommutative domains. Here we prove that Theorem 3.2 holds for some nice
noncommutative domains. It will be interesting to see if Theorems 1.1 and 1.2 hold
for the domains listed next.

Proposition 5.4. The following (noncommutative) domains satisfy SMC.
(1) Skew polynomial algebras ky,,[x1, -+ ,x4) and ky,; [x7", - - Lot
(2) The Weyl algebras Aq.
(3) The universal enveloping algebras U(L) of finite dimensional Lie algebras L.
(4) Quantum matriz algebras My(q,pi;) and GLq(q,pij).
(5) Quantum Weyl algebras Aq(q,pij).
Proof. (1) It is easy to see that ky,, [x1,- -, z4] is a twisted semigroup algebra k+N?
and that kp,, [z, - ,23"] is a twisted group algebra k * Z. By Theorem 3.2, the
commutative polynomial algebras k[N¢] and k[Z9] satisfy SMC. Hence it suffices
to prove the following statement: If G is an ordered semigroup, then a twisted
semigroup algebra k * G [MR, 1.5.8] satisfies SMC if and only if the semigroup
algebra k[G] satisfies SMC. Note that GKdim(k * G) = GKdim(k[G]) [Zh, 8.5(1)].
By definition, k * G and k[G] have the same G-graded k-linear space kG. Since
k x G is a G-graded algebra and G is ordered, there is a leading-term map v from
k x G to itself. Hence we can apply Lemma 2.1 to the graded algebra k * G. As in
the proof of Theorem 3.2 (see case 2), we only need to consider G-graded subspaces
to prove SM(Vp, ¢, d) for some graded subspace Vp. For every G-graded subspace
W of kxG, W = kH for some subset H C G. Let V' be another G-graded subspace
kL for some L C G. Then it is easy to check that

WV =k(HL) and  W"=k(H")

as subspaces of k * G. Hence the dimensions of the subspaces W, V., WV and W™
are only dependent on the subsets of the semigroup G and the group multiplication.
By the definition of SM (Vp, ¢, d), kG satisfies SM (Vp, ¢, d) if and only if k[G] does.

(2)-(5) By Lemma 3.1(1) and part (1), it is enough to check that every algebra
in (2)-(5) is a Z'-filtered algebra such that the associated graded algebra gr(A) is
a commutative or skew polynomial algebra and that GKdim(A) = GKdim(gr(A)).

By [Zh, 6.9], the Weyl algebras and universal enveloping algebras are Z-filtered
algebras with associated graded algebras being commutative polynomial rings. By
[Zh, 7.4], the quantum algebra Mg(q,p;;) is a 74 filtered algebra with associated
graded algebra being k x N¢. By [Zh, 7.4], the quantum algebra GLq(q,pi;) is a
74 filtered algebra with associated graded algebra being k % (Nd2_d ®7Z9). By [Zh,
7.5], the Aq4(q,pi;) is a Z*@-filtered algebra with associated graded algebra being
kxN24. Finally [Zh, 6.9, 7.4 and 7.5] also indicate that GKdim(A) = GKdim(gr(4))
for the algebras in (2)—(5) and thus we have finished our proof. |
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