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EXPLICIT BETTI NUMBERS FOR A FAMILY

OF NILPOTENT LIE ALGEBRAS

GRANT F. ARMSTRONG, GRANT CAIRNS, AND BARRY JESSUP

(Communicated by Roe Goodman)

Abstract. Betti numbers for the Heisenberg Lie algebras were calculated by
Santharoubane in his 1983 paper. However few other examples have appeared
in the literature. In this note we give the Betti numbers for a family of (2n+1)-
dimensional 2-step nilpotent extensions of R by R2n.

Introduction

Let g denote a finite dimensional nilpotent Lie algebra defined over an arbitrary
field k. Let g∗ denote the vector space dual to g and

∧g∗ =
⊕
i≥0

∧ig∗

the exterior algebra. The differential d : ∧g∗ → ∧g∗ is the unique derivation of
degree one extending

dx∗(a ∧ b) = −x∗([a, b])

for each x∗ ∈ ∧1g∗ and a, b ∈ g. We calculate the Betti numbers bi(g) of g given by

bi(g) = dim(Hi(g, k))

for the Lie algebra cohomology with coefficients in k.
For every n ∈ N, let hn denote the nth Heisenberg Lie algebra. This is the

(2n+1)-dimensional 2-step nilpotent Lie algebra with basis {x1, . . . , xn, y1, . . . , yn, z}
and non-zero relations [xi, yi] = z for each 1 ≤ i ≤ n. According to Santharoubane
[5]

bi(hn) =

(
2n

i

)
−
(

2n

i− 2

)
for all 0 ≤ i ≤ n (assuming

(
p
q

)
= 0 unless 0 ≤ q ≤ p). The remaining numbers are

given by Poincaré duality.
Recall that the Heisenberg Lie algebras arise as extensions of R2n by R. We

study a family of (2n+1)-dimensional 2-step nilpotent extensions of R by R2n. For
every n ∈ N, let gn denote the Lie algebra with basis {x1, . . . , xn, y1, . . . , yn, z} and
non-zero relations [z, xi] = yi for each 1 ≤ i ≤ n. Our main result is the following.
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Theorem. The i th Betti number bi(gn) is given by

bi(gn) =

(
n+ 1

[ i+1
2 ]

)(
n

[ i2 ]

)
for all 0 ≤ i ≤ 2n+ 1, where [x] denotes the integer part of x.

Proof of the theorem

We use the holonomy derivation θ : ∧R2n → ∧R2n associated to the extension
of Lie algebras, which restricts to θi : ∧iR2n → ∧iR2n, to reduce the theorem to
a computation of the dimensions of ker(θmi ). These we calculate by finding and
solving a recurrence relation involving n, i and m.

Let {x∗1, . . . , x∗n, y∗1 , . . . , y∗n, z∗} denote the standard dual basis for g∗n and consider
∧R2n = ∧〈x∗1, . . . , x∗n, y∗1 , . . . , y∗n〉. Define θ : ∧R2n → ∧R2n to be the unique
derivation of degree zero mapping x∗i to 0 and y∗i to x∗i for each 1 ≤ i ≤ n. Let θi
denote the restriction of θ to ∧iR2n for each 0 ≤ i ≤ 2n.

Lemma 1. The map ker(θi)⊕ (∧i−1R2n/Im(θi−1))→ Hi(gn, k) defined by

(α, 0) 7→ [α], (0, [β]) 7→ [z∗ ∧ β]

is a vector space isomorphism.

Proof. Extend θ to ∧g∗n by setting θ(z∗) = 0. Observe that d = z∗ ∧ θ, so the i th

cocycle and coboundary spaces are given respectively by

Zi(gn) = ker(θi)⊕ z∗ ∧ (∧i−1R2n) and Bi(gn) = z∗ ∧ Im(θi−1).

The lemma follows immediately.

Corollary 2. For each 0 ≤ i ≤ 2n+ 1, the i th Betti number bi(gn) is given by

bi(gn) = dim(ker(θi)) + dim(ker(θi−1)).

It remains to determine the dimension of each ker(θi). Consider

∧R2(n+1) = ∧R2n ⊗ ∧x∗ ⊗ ∧y∗

where θ1(x
∗) = 0 and θ1(y

∗) = x∗. Denote θi : ∧R2(n+1) → ∧R2(n+1) by θi,n+1.
Let θi,n denote the restriction of θi,n+1 to ∧iR2n. A short calculation shows that
ker(θi,n+1) depends on ker(θ2

i−1,n) (cf. Lemma 3 below), so to study ker(θi,n+1)
we consider arbitrary powers θmi,n(m ≥ 0) of θi,n. Observe that any element α ∈
∧R2(n+1) can be written in the form α = a+ b ∧ x∗ + c ∧ y∗ + d ∧ x∗ ∧ y∗ for some
a, b, c, d ∈ ∧R2n. It is easy to verify that such elements belong to ker(θmi,n+1) if and
only if

θmi,n(a) = 0, θmi−1,n(b) +mθm−1
i−1,n(c) = 0, θmi−1,n(c) = 0 and θmi−2,n(d) = 0.

Lemma 3. The map

φmi,n+1 : ker(θmi,n)⊕ ker(θm+1
i−1,n)⊕ ker(θm−1

i−1,n)⊕ ker(θmi−2,n)→ ker(θmi,n+1)

defined by

φmi,n+1(a, b, c, d) = a+ b ∧ x∗ + (c− (1/m)θi−1,n(b)) ∧ y∗ + d ∧ x∗ ∧ y∗

is a vector space isomorphism.
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Proof. It is easily checked that Im(φmi,n+1) ⊆ ker(θmi,n+1). Furthermore the map
is clearly injective. To demonstrate surjectivity, suppose we choose an arbitrary
element α = a+ b ∧ x∗ + c ∧ y∗ + d ∧ x∗ ∧ y∗ ∈ ker(θmi,n+1). Then

θmi,n(a) = 0, θm+1
i−1,n(b) = 0, θmi−2,n(d) = 0 and θm−1

i−1,n(c+ (1/m)θmi−1,n(b)) = 0,

meaning φmi,n+1(a, b, (c+ (1/m)θmi,n(b)), d) = α.

Corollary 4. Let K(n, i,m) = dim(ker(θmi,n)). Then one has the recurrence

K(n+ 1, i,m) = K(n, i,m) +K(n, i− 1,m+ 1)

+K(n, i− 1,m− 1) +K(n, i− 2,m).

The following boundary conditions are deduced directly from the definition of θ
(condition (3) assumes θ0 is the identity map):

K(0, i,m) =

{
0, if i ≥ 0, m = 0 or i ≥ 1, m ≥ 1,

1, if i = 0, m ≥ 1.
(1)

K(n, 0,m) =

{
0, if m = 0,

1, if m ≥ 1.
(2)

K(n, 1,m) =


0, if m = 0,

n, if m = 1,

2n, if m ≥ 2.

(3)

K(n, i, 0) = 0, for any n ≥ 0 and i ≥ 0.(4)

Notice that the K(n, i,m)’s are uniquely determined by induction on n, using the
recurrence relation along with these conditions. To facilitate a solution we extend
consideration to negative i and m using boundary conditions (2), (3) and (4). A
short calculation shows that this amounts to setting K(n, i,m) = 0 for negative i
and K(n, i,−m) = −K(n, i,m) for m ≥ 0.

Lemma 5. For all n ≥ 0 and all i,m ∈ Z, we have

K(n, i,m) =
n∑
p=0

(
n

i− p

)(
n

p

)
Sign(m− i+ 2p),(5)

where Sign is the usual sign function.

Proof. If we can prove that

K(n, i,m) =
n∑
p=0

n∑
q=0

(
n

p

)(
n

q

)
K(0, i− p− q,m− p+ q),(6)

then we obtain expression (5) from boundary condition (1). To prove (6) we pro-
ceed by induction on n. In the case n = 0 the result is trivial. The induction
step is a straightforward matter of using the recurrence relation and the inductive
assumption, along with the binomial identity(

n+ 1

i

)
=

(
n

i

)
+

(
n

i− 1

)
.

To determine the Betti numbers we are concerned with the case m = 1. In this
case (5) reduces to the following.
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Corollary 6. We have

K(n, i, 1) =

{(
n
i/2

)2
, if i is even,(

n
(i+1)/2

)(
n

(i−1)/2

)
, if i is odd.

(7)

Finally by Corollary 2, one has

bi(gn) = K(n, i, 1) +K(n, i− 1, 1)

for all 0 ≤ i ≤ 2n+ 1. The theorem now follows.

Remarks

Figure 1 shows the Betti numbers of the Heisenberg Lie algebras in the cases
n = 5, 10 and 40. These curves have been normalized by dividing by the maximum
Betti number in each case. In Figure 2 the analogous curves are depicted for
the Lie algebras gn. The curves for the Heisenberg Lie algebras display an “M”
shape, which begins with n = 4 and becomes more pronounced with larger n. By
comparison, the distribution of the Betti numbers for gn forms a well behaved
“Bell” shape for any n.

According to Dixmier’s theorem [2], one has bi ≥ 2, for all 0 < i < dim g.
However, as Figures 1 and 2 show, this bound is often very weak. One may wonder
whether it is true that bi ≥ b1 for all 0 < i < dim g. This is easy to prove in general
for i = 2, and is easily verified for all i for the families hn and gn.

Lastly notice the theorem is actually valid for some fields of non-zero charac-
teristic. Indeeed Lemma 3 only requires division by elements m ∈ k less than or
equal to the degree of nilpotency of θ. This imposes the obvious restrictions on the
characteristic of k. By Nomizu’s Theorem [4], the cohomology of gn over the reals
is isomorphic to the cohomology of the nilmanifold Gn/Γn, where Gn is the simply
connected Lie group with Lie algebra gn, and Γn is a uniform lattice, with gen-
erators a1, . . . , an, b1, . . . , bn, c and nonzero commutators caic

−1a−1
i = bi, for each

1 ≤ i ≤ n. The referee has kindly remarked that the cohomology of gn over the
rationals and over appropriate extensions of the integers is isomorphic to the coho-
mology of the group Γn. The isomorphism over the rationals follows since (∧g∗n, d)

i = 0

n = 5

n = 10

n = 40

i = 2n + 1

Figure 1. Betti numbers for the Heisenberg Lie algebras
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i = 0

n = 5

n = 10

n = 40

i = 2n + 1

Figure 2. Betti numbers for the gn’s

is the 1-minimal model for Γn (see [3]); for extensions of the integers obtained by
inverting primes in a finite set, the isomorphism follows from [1].
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