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IRREDUCIBLE REPRESENTATIONS

OF THE ALTERNATING GROUP IN ODD CHARACTERISTIC

BEN FORD

(Communicated by Ronald M. Solomon)

Abstract. We use the recently-proved conjecture of Mullineux to determine
which modular irreducible representations of the symmetric group Σn split on
restriction to An, and which remain irreducible (everything taking place over
a splitting field for An of characteristic p > 2). An indexing of the absolutely
irreducible representations of An is thus obtained. A modular analogue of the
Frobenius symbol for a partition is introduced, which makes the Mullineux
map somewhat more intuitive.

1. Introduction and notation

Parameterizations of the irreducible representations of a class of groups by some
combinatorial objects provide some of the most appealing results and useful tools
in group theory — labeled Dynkin diagrams (groups of Lie type), partitions and
tableaux (symmetric groups), etc. It is Alfred Young’s parameterization of the or-
dinary representations of the symmetric group Σn by partitions of n (see [9] for an
overview) that began the line of research we continue here. In particular, Young’s
constructions were extended by James ([6]) to representations of Σn over an arbi-
trary field K of characteristic p, and we investigate these modular representations
which James constructed.

As soon as one has a result about the symmetric group, it is natural to ask what
the result implies for the alternating group An. Young’s constructions can be used
to give a nice parameterization of the ordinary irreducible representations of the
alternating group An by describing those irreducible representations of Σn which
split upon restriction to An (see [7, §2.5]). But James’s parameterization of the
modular irreducible representations of Σn has proved much more difficult to use
to obtain information about An. Benson in [3] used a reduction modulo two of
the spin representations to determine which 2-modular irreducible representations
of Σn are irreducible upon restriction to An, and which split as the sum of two
(non-isomorphic) irreducible modules (that each Σn-module must do one of these
things is clear as An is normal of index 2 in Σn).

With the Mullineux conjecture ([8]) in the representation theory of the symmet-
ric group now proved ([5]), a reasonably nice parameterization of the absolutely

Received by the editors August 28, 1995.
1991 Mathematics Subject Classification. Primary 20C20, 20C30.
Supported in part by the NSA.
Thanks to Jens C. Jantzen for suggesting this question.

c©1997 American Mathematical Society

375



376 BEN FORD

irreducible representations of the alternating group An over a field of odd charac-
teristic is now available. We will assume that K is a splitting field for An (n > 1),
of characteristic p > 2.

The standard approach in descending from Σn to An is to use Clifford’s theory
(see Curtis and Reiner [4, §49]), of which we need only an easy application since
Σn/An has order 2.

First some notation: Let λ be a partition of n (written λ ` n); that is,

λ = (l1 ≥ l2 ≥ · · · ≥ lm > 0),
∑

li = n.

We usually collect like parts together and write

λ = (λa1
1 , . . . , λakk ),

with λi > λi+1 > 0 for i = 1, . . . , k − 1; ai 6= 0; and
∑
aiλi = n. That the

number of partitions of n is equal to the number of possible cycle structures for an
element of Σn, and thus to the number of conjugacy classes in Σn, is clear. But the
number of conjugacy classes in Σn is the same as the number of ordinary irreducible
representations. Young showed how to construct (over Q) an irreducible module
Sλ for each partition λ, such that if µ and λ are distinct partitions, then Sλ and
Sµ are not isomorphic.

We use the symbol [λ] to represent the partition’s Young diagram, which consists
of n nodes • placed in decreasing rows, as illustrated by the following example. Let
λ = (52, 3, 1) (so n = 14); then the Young diagram is:

[λ] =

• • • • •
• • • • •
• • •
•

By the rim of [λ] we shall mean the collection of nodes which are either at the
bottom of a column, at the right end of a row, or both.

Given a partition λ, one obtains another partition λ′, called the conjugate par-
tition to λ, by transposing the Young diagram [λ] about its main diagonal. So if
λ = (52, 3, 1) as above, then the Young diagram for λ′ is

[λ′] =

• • • •
• • •
• • •
• •
• •

and λ′ = (4, 32, 22).
Finally, If H is a subgroup of a group G, and M is an FG-module for some field

F , by M ↓H we shall mean M restricted to H, that is, M considered as a module
over FH ⊆ FG. If N is an FH-module, then N ↑G will be the induced module
FG⊗FH N (see [4, §38] for more).

2. Mullineux: A modular λ′

Of course, if λ is a partition of n, then so is λ′, and so λ and λ′ correspond to
(perhaps different, if λ 6= λ′) irreducible Q-representations of Σn. The crucial fact

in descending to An is that Sλ ⊗ sgnn = Sλ
′
, where for σ ∈ Σn, sgnn(σ) = 1 if σ

is an even permutation, and sgnn(σ) = −1 if σ is odd. Thus Sλ ↓An= Sλ
′ ↓An (as
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the two representations differ only on odd elements of Σn). Clifford’s theory then
allows us to tell fairly easily when Sλ ↓An is irreducible (this happens if λ 6= λ′),
and when Sλ ↓An is the sum of two inequivalent irreducible An-modules (if λ = λ′).

If we now consider representations over K instead of over Q, things don’t work
as nicely. Assume λ is a p-regular partition, and let Dλ be the irreducible KΣn-
module corresponding to λ. It is still true that (Dλ ⊗ sgnn) ↓An= Dλ ↓An , but it

is no longer true that Dλ ⊗ sgnn = Dλ′ . Mullineux’s algorithm helps out here and
gives a modular analogue of λ′. That is, Mullineux in [8] defined a bijection m on
the set of p-regular partitions of n, and his conjecture that Dλ ⊗ sgnn = Dm(λ)

has now been verified ([5]). With this in hand, we can describe the irreducible
K-representations of An.

Clearly Dλ ↓An= Dm(λ) ↓An , as in the characteristic zero case. Also, Dλ ↓An is
completely reducible (since An is a normal subgroup of Σn). Consider an irreducible
summand D of Dλ ↓An (= Dm(λ) ↓An). If we consider the action of an odd element
of Σn, say (12), on D, the possibilities are that D(12) = D (the inertia group of D
is Σn), or D(12) 6= D (the inertia group of D is An).

In the first case, we have that D = Dλ ↓An is irreducible, since Dλ is an irre-
ducible Σn-module and D is an invariant submodule. Then it is easy to see that
Dλ and Dλ ⊗ sgnn = Dm(λ) are not isomorphic as Σn-modules: Assume that σ is
an Σn-isomorphism. Then σ is also an An-isomorphism; but D is an irreducible
An-module and K is a splitting field for An. Thus σ must be a scalar multiple of
the identity map; but this contradicts the assumption that it is an isomorphism
between Dλ and Dλ ⊗ sgnn.

If, on the other hand, D(12) 6= D, then Clifford’s theorem says

Dλ ↓An= D ⊕D(12) = Dm(λ) ↓An ,

and this implies (by Mackey’s subgroup theorem; see for example [4, §44]) that
Dλ ∼= D ↑Σn∼= Dm(λ).

Summarizing, we have:

Theorem 2.1. 1. If λ 6= m(λ), then Dλ ↓An is irreducible.
2. If λ = m(λ), then Dλ ↓An is the sum of two irreducible, non-equivalent,

representations of An, say Dλ
+ and Dλ

−.
Finally,

{Dλ ↓An | λ 6= m(λ)} ∪ {Dλ
+, D

λ
− | λ = m(λ)}

is a complete system of inequivalent irreducible KAn-modules.

3. Fixed points and a modular Frobenius symbol

So the issue is identifying the fixed points of the Mullineux map. Andrews and
Olsson in [2] counted the fixed points of m and described them to some extent.
Unfortunately, the fixed points are not easy to “see” from the diagram or the usual
presentation of the partitions, as they are in the ordinary case. We shall describe
(briefly) the Mullineux map and describe its fixed points. We will use an alternative
method of recording the data involved, which makes the map a bit more appealing.

First let us recall the Frobenius symbol of a partition (see for example [1]), a
method of representing a partition to make the conjugation action obvious. Given
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a partition λ, we draw its Young diagram [λ], and then construct a 2× k array

Fr(λ) =

(
a1 a2 · · · ak
b1 b2 · · · bk

)
,

where k is the number of nodes on the main diagonal of the diagram, ai is the
number of nodes to the right of the ith node on the diagonal, and bi is the number
of nodes below the ith node on the diagonal. For example, the Frobenius symbol

for λ = (52, 3, 1) is Fr(λ) =

(
4 3 0
3 1 0

)
, as we see from the diagram below.s s s s s�� ��s s s s s�� ��s s ss

�

�

�

�
k

Notice that n is the sum of all the entries in the array, plus the number of columns.
Also notice that another way to obtain the symbol is to set

a1 = (the length of the rim of [λ])− (the number of rows in [λ]),

b1 = (the number of rows in [λ])− 1;

then remove the rim and repeat to obtain a2, b2, etc.
The advantage of the notation is that Fr(λ′) is obtained from Fr(λ) by simply

interchanging the two rows. In particular, the fixed points of the conjugation map
become obvious. We shall see that with an appropriately defined modular analogue
of Fr(λ), the same is true of the Mullineux map.

Given a partition λ, we define the p-rim of the associated Young diagram [λ]
as follows (see [5] for a more rigorous definition): Beginning at the top right-hand
corner of [λ], the first p nodes of the rim are in the p-rim. Then skip to the next
row, and take the next p nodes of the rim. Continue until we reach the end of the
rim; the last of these “p-segments” may contain fewer than p nodes. For example,
the 3-rim and the 5-rim of the diagram for λ = (52, 3, 1) are shown as open circles:

p = 3 :

• • • • ◦
• • • ◦ ◦
◦ ◦ ◦
◦

p = 5 :

• • • • ◦
• • ◦ ◦ ◦
• • ◦
◦

Now let h1 be the number of nodes in the p-rim of λ, and let r1 be the number of
rows in λ. Delete the p-rim and repeat to obtain sequences h1, h2, . . . and r1, r2, . . . .
Let k be such that hk+1 = rk+1 = 0, but hk 6= 0 6= rk. The standard way of keeping
track of this data is via the Mullineux symbol

M(λ) =

(
h1 h2 · · · hk
r1 r2 · · · rk

)
;

but we want to give a different formulation which encodes the same information
but makes the desired map more intuitive.

The p-modular Frobenius symbol for λ, Frp(λ), will be a 3× k array

Frp(λ) =

a1 a2 · · · ak
b1 b2 · · · bk
ε1 ε2 · · · εk

 ,
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constructed as follows:

εi =

{
0 if p|hi,
1 if p6 |hi,

ai = hi − ri,
bi = ri − εi.

Notice that n is the sum of all the entries in Frp(λ).
The fact that the Mullineux symbol uniquely determines λ (proved by Mullineux

in [8]) means that the modular Frobenius symbol uniquely determines λ (as it is
possible to reconstruct M(λ) from Frp(λ)).

Finally, if λ has modular Frobenius symbol

Frp(λ) =

a1 a2 · · · ak
b1 b2 · · · bk
ε1 ε2 · · · εk

 ,

then the Mullineux map m is defined by

Frp(m(λ)) =

b1 b2 · · · bk
a1 a2 · · · ak
ε1 ε2 · · · εk

 .

So to perform the p-analogue of conjugation, we just interchange the top two rows
of the modular Frobenius symbol for the partition — just as in the ordinary case,
we switch the two rows of Fr(λ).

Now it is easy to see the fixed points of m: λ = m(λ) if and only if the top two
rows of Frp(λ) are the same. For example, if λ = (52, 3, 1), then

Fr3(λ) =

3 1 1 0
3 1 1 0
1 1 1 1

 Fr5(λ) =

2 2 0
3 3 2
1 0 1

 .

Thus if charK = 3, Dλ ∼= Dm(λ) and thus Dλ ↓An splits as a sum of two irreducible
modules; while if charK = 5, Dλ 6∼= Dm(λ), and so Dλ ↓An is irreducible.
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