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WITNESSING DIFFERENCES WITHOUT REDUNDANCIES
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(Communicated by Andreas R. Blass)

Abstract. We show that n− 1 elements suffice to witness the differences of
n pairwise distinct sets, and provide sufficient conditions for an infinite family

of pairwise distinct sets to have a minimal collection of elements witnessing
the differences between any two of its members.

By the Extensionality Axiom, the difference between two distinct sets a and b
is witnessed by at least one element d such that d ∈ a \ b or d ∈ b \ a ; in fact
any element in the symmetric difference a∆b = (a \ b) ∪ (b \ a) witnesses such a
difference. For that reason we say that a∆b is a differentiating set for {a, b} . Since
all the elements in a∆b but one are redundant for that purpose, unless a∆b is a
singleton, we say that a∆b is a redundant or non-minimal differentiating set for
{a, b} , while for any d ∈ a∆b , {d} is an irredundant or minimal differentiating set
for {a, b}. Suppose now that n pairwise distinct sets a1, . . . , anare given; how many
elements do we need to witness their being different from each other? Equivalently,
given a differentiating set D for {a1, . . . , an} , how many redundant elements
are to be found in D ? Two extreme cases immediately come under attention.
If a1, . . . , an can be arranged into an increasing chain with respect to inclusion,
or else if a1, . . . , an are pairwise disjoint, then obviously we need exactly n − 1
elements to witness their differences and any differentiating set for {a1, . . . , an} of
cardinality m has at least m− n+ 1 redundant elements. In general it is obvious
that we need at most

(
n
2

)
elements to witness the differences of n pairwise distinct

sets a1, . . . , an . However
(
n
2

)
is by far an excessively large bound; in this note we

offer an extremely simple proof that n− 1 elements always suffice to witness the
differences among n distinct sets (see Proposition 1). For an earlier proof of this
result in the special case in which the n sets are subsets of an n-elements domain
see [Bon72, Bol86].

Even from the first rough estimate, it is clear that in the case of finitely many
pairwise distinct sets a1, . . . , an , an irredundant differentiating set can be obtained
from any finite differentiating set by suppressing one after the other the elements
which are redundant and remain so as the procedure goes on. It is quite natural
to enquire whether that holds also for infinite families of pairwise distinct sets.
Any sequence of sets densely ordered with respect to inclusion readily provides an
example of a family of pairwise distinct sets for which no minimal differentiating
set can exist (see Proposition 2 below). However, by making an essential use of the
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Axiom of Choice (AC), we single out two significant cases in which differences can
be witnessed without redundancies:

• with possibly finitely many exceptions, any two sets in the family have finite
symmetric difference;
• only finitely many sets in the family have a non-empty intersection with any

given set in the family.

Definition 1. 1. d witnesses the difference between two sets a and b if d ∈ a
and d /∈ b , or else d /∈ a and d ∈ b .

2. D is a differentiating set of a family of sets {ai}i∈I if for every i, j ∈ I , if
i 6= j , then there is d ∈ D such that d witnesses the difference between ai
and aj .

3. If D is a differentiating set of a family {ai}i∈I , then d is redundant if D\{d}
is also a differentiating set of {ai}i∈I .

4. D is redundant or non-minimal if it has a redundant element, irredundant
or minimal otherwise.

Proposition 1. If D is a differentiating set of a finite family {a1, . . . , an} , then
there is a differentiating set D0 ⊆ D of {a1, . . . , an} , such that |D0| ≤ n− 1 .

Proof. If n = 1 , obviously D0 = ∅ has the desired property.
Assume the stated proposition holds for n . Given a1, . . . , an, an+1 , by inductive

hypothesis there is a subset D′0 of D such that |D′0| ≤ n− 1 , which is a minimal
differentiating set for a1, . . . , an .

Since D′0 is a differentiating set for a1, . . . , an , there can be at most one k ,
1 ≤ k ≤ n such that:

D′0 ∩ an+1 = D′0 ∩ ak.
If there is no such k , then it suffices to let D0 = D′0 . Otherwise letting k0 be

the unique such k we pick any d ∈ D such that

d ∈ (an+1 ∩D)∆(ak ∩D),

and let D0 = D′0∪{d}. D0 is a differentiating set for a1, . . . , an+1 and |D0| ≤ n.

Remark. Note that Proposition 1 is implied by the following weaker form: every
finite family of n pairwise distinct sets has a differentiating set of cardinality less
than n. In fact given a differentiating set D for {a1, . . . , an} it suffices to apply
this weaker form to {a1∩D, . . . , an∩D} to establish the conclusion of Proposition
1. The same remark will apply also to our further results.

Clearly the previous result entails that if D is a differentiating set for {a1, . . . ,an},
then D contains minimal differentiating sets for {a1, . . . , an} of cardinality less
than or equal to n− 1 .

Note, however, that it is possible to have minimal differentiating sets of different
cardinalities. For example D = {0, 1, . . . , n − 1} is a minimal differentiating set
for the family {a1, . . . , a2n} of all subsets of {0, 1, . . . , n− 1} ; D is also a minimal
differentiating set for {a1 ∪ {n}, a2 ∪ {n + 1}, . . . , a2n ∪ {n + 2n − 1}} , which
however admits also {n + 1, . . . , n + 2n − 1} as another minimal differentiating
set of cardinality 2n − 1 . Of course by Proposition 1 there cannot be any bigger
minimal differentiating set for the same family.

As mentioned, Proposition 1, for the special case in which a1, . . . , an are subsets
of {1, . . . , n} has been proved in [Bon72] via a graph-theoretic argument. That
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result is reported in [Bol86], which, besides Bondy’s proof, provides also a different
proof which directly applies to yield the general result stated here.

Turning now our attention to infinite families, we note that a minimal differen-
tiating set does not necessarily exist.

Proposition 2. If F is a family densely ordered with respect to ⊂, and D is a
differentiating set for F , then every element of D is redundant.

Proof. Given a, b ∈ F such that a ⊂ b, there exists a countable sequence a1, a2, . . . ∈
F such that a ⊂ a1 ⊂ a2 ⊂ . . . ⊂ b. Since D is a differentiating set, for every
n > 1, D∩(an+1 \an) 6= ∅. Thus D∩(b\a) is infinite. The conclusion immediately
follows.

Infinite sets have to appear in any family which has no minimal differentiating
set: that is among the consequences of the next proposition.

Proposition 3. If D is a differentiating set for a family {ai}i∈I such that for i
and j in I , i 6= j , the symmetric difference (ai ∩D)∆(aj ∩D) is finite, then D
includes a minimal differentiating set for {ai}i∈I .

Proof. Let D be the set of differentiating sets for {ai}i∈I which are contained in
D . Let C be a descending chain, with respect to inclusion, of elements in D .
Every C ∈ C has a non-empty intersection with the symmetric difference of any
pair of distinct elements in {ai}i∈I . Moreover, since such symmetric differences
are all finite, the same holds also for

⋂
C∈C C , which therefore belongs to D .

An application of Zorn Lemma guarantees the existence of a minimal element in
D .

Corollary 1. Every family of pairwise distinct finite sets has an irredundant dif-
ferentiating set.

Infinitely many infinite sets are necessarily present in any family of pairwise dis-
tinct sets lacking an irredundant differentiating set; that is among the consequences
of the following strengthening of Proposition 3.

Proposition 4. If D is a differentiating set for a family F = F0 ∪ {a1, . . . , an}
such that for all a and b in F0 , (a ∩D)∆(b ∩D) is finite, then D includes an
irredundant differentiating set for F .

Proof. By induction on n . We distinguish two cases:
Case 1): There exists D′ ⊆ D , differentiating set for F0 , such that for some

1 ≤ i ≤ n, ai ∩D′ has a finite symmetric difference with b ∩ D′ for some—and
hence for all—b ∈ F0. Pick any such ai and let F ′0 = F0 ∪ {ai} . Obviously,

F = F ′0 ∪ ({a1, . . . , an} \ {ai}).
Using the same argument of the proof of Proposition 1, it follows that by adding
to D′ at most n elements in D , we obtain a differentiating set D′′ ⊆ D for
F . Hence we can apply the inductive hypothesis to conclude that there exists an
irredundant differentiating set D′′′ ⊆ D′′ ⊂ D for F .

Case 2): Suppose the assumption of case 1 does not hold. Let X be a dif-
ferentiating set for {a1, . . . , an} . By applying Zorn’s Lemma, as in the proof of
Proposition 3, to the family of subsets Y of D such that Y ∪X is a differentiating
set for F0 , we obtain a minimal subset D′ of D such that D′∪X is a differentiating
set for F0 .
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We claim that D′ ∪X is also a differentiating set for F . The only non-trivial
point to verify is that two elements ai ∈ {a1, . . . , an}, and b ∈ F are differentiated
by D′ ∪X . Indeed, by the case hypothesis, for every ai ∈ {a1, . . . , an}, and every
b ∈ F the symmetric difference ai ∩ (D′ ∪X)∆b ∩ (D′ ∪X) is infinite.

While the elements in D′ are certainly not redundant, some of the elements in
X could be so. However, since X is finite, it suffices to remove the redundant
elements of X to obtain a minimal differentiating set for F .

Remark. Given a family of finite sets F = {ai}i∈I , in ZF , F can be transformed
into F ′ = {bi}i∈I where bi = {〈x, ai〉 | x ∈ ai} . The elements of F ′ are finite
and pairwise distinct, hence by Corollary 1, F ′ has an irredundant differentiating
set. Using such a set, since the elements of F ′ are in fact pairwise disjoint, it is
quite straightforward to obtain, in ZF , a choice function for the original family F .
Therefore Proposition 3 entails, in ZF , the axiom of choice for families of finite
sets.

We do not know whether this principle, which is weaker than AC , suffices to
establish in ZF Proposition 3.

The proofs given for Proposition 3 make use of Zorn’s Lemma on a family of
subsets of D. We can provide different proofs for Propositions 3 and 4 of a more
constructive character, which only assume that the given differentiating set D can
be well ordered. As a consequence no form of the axiom of choice is required when
D is a countable set.

Proposition 5. If D is a well ordered differentiating set for a family F such that
for all a and b in F0 , (a∩D)∆(b∩D) is finite, then D includes an irredundant
differentiating set for F .

Proof. Let {d0, d1, . . . , dγ , . . . } be a well ordering of D.
Let

• D0 = D;
• Dα+1 = Dα \ {dδ} where δ is the least ordinal s.t. dδ is redundant (for F) in
Dα; if there is no redundant element in Dα, then Dα+1 = Dα;
• Dλ =

⋂
α<λD

α for λ a limit ordinal.

Since the Dα’s are decreasing with respect to inclusion, there is a (least) ordinal
α0 s.t.

Dα0 = Dα0+1.

Clearly Dα0 has no redundant element. Furthermore for every α, Dα is a differ-
entiating set; in particular Dα0 is a minimal differentiating set for F . In fact D0

is a differentiating set by hypothesis and if Dα is a differentiating set for F , then
Dα+1 is a differentiating set for F as well. Furthermore, due to the finiteness of
(a∆b)∩D for all a, b ∈ F , if for all α < λ, (a∆b)∩Dα 6= ∅, then (a∆b)∩Dλ 6= ∅.

Proposition 6. If D is a well ordered differentiating set for a family F = F0 ∪
{a1, . . . , an} such that for all a and b in F0 , (a∩D)∆(b∩D) is finite, then D
includes an irredundant differentiating set for F .

Proof. Let {d0, d1, . . . , dγ , . . . } be a well ordering of D. Since D is, in particular,
a differentiating set for F0, as in Proposition 5 we can determine a minimal dif-
ferentiating set D0 ⊆ D for F0. If D0 is a differentiating set for F , we are done.
Otherwise by the argument used in the proof of Proposition 1 there is a subset C0
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of D \D0 having at most n elements, such that D0 ∪C0 is a differentiating set for
F . However, D0∪C0 need not be minimal since the presence of elements in C0 can
make redundant some of the elements in D0.

Let

• D0
0 = D0;

• Dα+1
0 = Dα

0 \ {dδ} where δ is the least ordinal such that dδ ∈ Dα
0 and is

redundant (for F) in Dα
0 ∪ C0; if no such ordinal exists, Dα+1

0 = Dα
0 ;

• Dλ =
⋂
α<λD

α for λ a limit ordinal;

and let α0 be the least ordinal such that Dα0
0 = Dα0+1

0 .
Dα0

0 has no redundant element in Dα0
0 ∪C0. Furthermore no element in C0 can

be redundant in Dα0
0 ∪C0, since the elements of C0 were not redundant in D0 ∪C0

to start with. However Dα0
0 ∪ C0 need not be a differentiating set for F .

If a, c ∈ F and a ∩ (Dα0
0 ∪ C0) = c ∩ (Dα0

0 ∪ C0) then (a∆c) ∩ (D0 \Dα0
0 ) must

be infinite. For, otherwise, for some α < α0

(a∆c) ∩ (D0 ∪C0) ⊆ D0 \Dα+1
0 ,

and

(a∆c) ∩ (D0 ∪C0) 6⊆ D0 \Dα
0 .

This means that Dα+1
0 is obtained from Dα

0 by taking away from Dα
0 an element

which is not redundant, since it is the only element which witnesses the difference
between a and c in Dα

0 , contrary to the definition of Dα+1
0 . Obviously, from the

fact that (a∆c)∩ (D0 \Dα0
0 ) is infinite it follows that (a∆c)∩D0 is infinite, so that

a and c cannot be both in F0. Hence Dα0
0 ∪ C0 is a (minimal) differentiating set

for F0. By adding a set C1 of at most n elements to Dα0
0 ∪ C0 we can obtain a

differentiating set for F . If Dα0
0 ∪ C0 ∪ C1 is minimal we are done, otherwise we

repeat the procedure leading from D0 to Dα0
0 , starting with D1 = Dα0

0 ∪ C0. We
claim that after finitely many steps we obtain a minimal differentiating set for F .
This follows from the fact that, if a ∈ {a1, . . . , an} and a ∩Di = c ∩Di for some i,
then either

i) c ∈ {a1, . . . , an} and a ∩Dj 6= c ∩Dj for any j > i, or
ii) c ∈ F0 and a ∩Dj 6= b ∩Dj for j > i and b ∈ F0.

As for i) notice that if a ∩Di = c ∩Di, then (a∆c) ∩Dk is finite for any k ≥ i,
in particular this holds for k = j − 1, from which it follows that a ∩Dj 6= c ∩Dj .

As for ii), if for j ≥ i there were b ∈ F0\{c} such that a ∩ Dj = b ∩ Dj , then
(a∆b) ∩ Dj−1 would be infinite. Since a ∩ Di = c ∩ Di and Dj−1\Di is finite, it
would follow that (b∆c) ∩Di is finite, contradicting b, c ∈ F0.

The full fledged Axiom of Choice AC is certainly needed to prove the following
result, which provides another sufficient condition for a family of pairwise distinct
objects to have an irredundant differentiating set.

Proposition 7. If D is a differentiating set of a family F such that for all a ∈ F
there are only finitely many b’s in F such that a ∩ b ∩D 6= ∅, then D includes
an irredundant differentiating set of F .

Proof. Given x ∈ D let

Ax = {a ∈ F | x ∈ a},
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and let

Bx = {b ∈ F | x /∈ b ∧ b ∩
⋂
Ax 6= ∅}.

From the assumption on F it follows that both Ax and Bx are finite. Moreover,
let

ax =
(⋂

Ax
)
\
(⋃

Bx
)
.

Clearly if ax 6= ay , then ax ∩ ay = ∅ , for every x ∈ D,

x ∈ a ∈ F iff ax ⊆ a,
and only finitely many pairwise distinct ax’s are included in any given element of
F .

For a ∈ F let ā = {ax : x ∈ a} and let F̄ = {ā | a ∈ F} . Since F̄ is a family
of finite sets, by Corollary 1 it has a minimal differentiating set D̄ . The image of
any choice function for D̄ is a minimal differentiating set for F .

The previous proof shows how the problem of determining a minimal differen-
tiating set for a given family F can be reduced, by using the Axiom of Choice, to
the problem of determining a minimal differentiating set for the family F̄ whose
elements are the quotients of the sets in F with respect to the equivalence relation
∼F defined as follows:

x ∼F y iff ∀a ∈ F(x ∈ a↔ y ∈ b).

As for Proposition 3 and Proposition 4 we provide a more constructive proof
also for Proposition 7. We first sketch a proof, using the countable axiom of choice,
under the assumption that the given family of sets is countable and then point out
how AC permits the reduction of the general case to this special one (see Corollary
2 below).

Proposition 8. If D is a differentiating set of a countable family F such that
∀a ∈ F there are only finitely many b’s in F such that a ∩ b ∩D 6= ∅, then D
includes an irredundant differentiating set of F .

Proof. (Sketch) Let F = {ai}i∈ω be a countable family of pairwise distinct sets
with a0 = ∅.

Let D0 = ∅. Assuming Dn has been defined and is a minimal differentiating set
for {a0, . . . , an}, there is at most one k such that 0 ≤ k ≤ n and an+1 ∩ Dn =
ak∩Dn. If there is no such k, then we let Dn+1 = Dn. Otherwise Dn+1 is obtained
by first adding to Dn an element of D in an+1 \ ak, if that is possible, or else
an element of D in ak \ an+1, and then removing the redundant elements until a
minimal differentiating set for {a0, . . . , an+1} is obtained.

For every k ∈ ω let

• fk = min{j | ∀i ≥ j (ai ∩ ak = ∅)},
• Fk = min{j | ∀i ≥ j ∀h < fk (ai ∩ ah = ∅)}.
Then it follows that

1. ∀i > j > Fk (ak ∩Di ⊆ ak ∩Dj),
2. ∀i > k (ak ∩Di 6= ∅),
3. Dω = {d ∈ D : ∃k∀i > Fk d ∈ ak ∩Di} is a minimal differentiating set for
F .
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Finally, the assumption that a0 = ∅ can be discharged passing to the family F ′ =
F ∪ {∅}.

Corollary 2. If D is a differentiating set of a family F such that for all a ∈ F
there are only finitely many b ’s in F such that a ∩ b ∩D 6= ∅, then D includes
an irredundant differentiating set of F .

Proof. For a, b ∈ F , let a ∼0 b if there is a finite sequence of sets a0, . . . , an such that
a0 = a, an = b and for 0 ≤ i < n, ai∩ai+1 6= ∅. Clearly∼0 is an equivalence relation
and, because of the assumption on F , only countably many members of F belong
to the same equivalence class. Proposition 8 ensures the existence of a minimal
differentiating set for every such class, and using AC we can pick one of them. The
union of the minimal differentiating sets chosen is a minimal differentiating set for
F .

Remark. Since any family of sets of pairwise disjoint sets trivially fulfills the condi-
tion in Corollary 2, the same argument given in the remark following Proposition
4 shows that full AC is a consequence of Corollary 2. Therefore Corollary 2 is
equivalent to AC , over ZF .

The above results are by no means limited to the case in which one is dealing
with sets and the membership relation; they apply to all those ways in which the
difference between distinct objects is witnessed through a binary relation which
may or may not hold between elements of a possibly different kind and the given
ones. For example, if we look at the (supposedly) distinct columns of an m × n ,
(0, 1) -entries matrix, since the difference between two columns is witnessed by one
row at least, we have a lower bound on the number of rows that can be suppressed
still leaving a matrix with distinct columns, namely m − n + 1 . Similarly an
ω×ω (0, 1) matrix with distinct columns such that every column has only finitely
many 1’s, admits a minimal submatrix, obtained from it by suppressing rows (if
necessary), still having different columns.

We can also state some relations with minimal covers: given a family F = {ai}i∈I
and a set D , if for d ∈ D we let C(d) = {(i, j) | d ∈ ai∆aj}, then it is easy to see
that D is a differentiating set for F if and only if {C(d) | d ∈ D} covers I×I\∆(I),
where ∆(I) = {(i, i) | i ∈ I} . Furthermore D is an irredundant differentiating
set for F if and only if such a cover is in fact a minimal cover. If F satisfies
the condition of Proposition 3, then {C(d) | d ∈ D} is a cover of I × I \ ∆(I)
with the property that every infinite subfamily has an empty intersection. Every
cover having such a property has a minimal subcover, and Proposition 3 can be
derived from this principle. Incidentally, such a principle can be established by
using essentially the same argument used in proving Proposition 6. Despite such
connections, we note however that the existence of a minimal subcover of a given
family of sets and the existence of an irredundant differentiating set for it, are in
general unrelated. For example, since for every natural number n we have that
n = {0, . . . , n− 1} , the family N of the natural numbers is a cover of N itself,
which has no minimal subcover, while N is an irredundant differentiating set for
N . On the other hand the family {aq | q ∈ Q}∪{Q} , where aq = {p ∈ Q | p ≤ q} ,
has {Q} as a minimal subcover, but it has no irredundant differentiating set.

We should mention that the original motivation which led to the results in this
note came from investigations into the decision problem for the satisfiability of for-
mulae in the language with the equality and the membership relation (see [PP92]).
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As a matter of fact the possibility of bounding to n − 1 the number of sets
that is necessary to add to given n distinct sets a1, . . . , an to make the resulting
structure extensional over a1, . . . , an , greatly improves the efficiency of the decision
procedure for (an extension of) the class MLSS (see [CFO89]).

Concerning the naturally arising question of how many successive addition of dif-
ferentiating sets are needed to eventually obtain an extensional structure including
the originally given sets a1, . . . , an , we point out that [PP88] provides an example
of two sets ω′ and ω′′ for which there is no way of completing that task in finitely
many steps.

It is on the ground of such an example that a way of stating the existence of
infinite sets, which is remarkably simple from the point of view of logical complexity,
becomes available, as shown in [PP88] and [PP90].
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