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ON A NEW CONDITION FOR STRICTLY

POSITIVE DEFINITE FUNCTIONS ON SPHERES
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Abstract. Recently, Xu and Cheney (1992) have proved that if all the Le-
gendre coefficients of a zonal function defined on a sphere are positive then the
function is strictly positive definite. It will be shown in this paper that, even
if finitely many of the Legendre coefficients are zero, the strict positive defi-

niteness can be assured. The results are based on approximation properties of
singular integrals, and provide also a completely different proof of the results
of Xu and Cheney.

1. Introduction

Let Sm ⊂ Rm+1 be the m–dimensional unit sphere for m ≥ 1. A continuous
function K : [−1, 1] → R defines for a fixed η ∈ Sm a so–called η–zonal func-
tion ξ 7→ K(η · ξ), ξ ∈ Sm, on the sphere, where · denotes the usual inner product
in Rm+1. Thus, the function K(η· ) depends only on the spherical distance
arccos(ξ · η) between ξ and η. Such a continuous function is called positive definite,
if for any choice of pairwise distinct points η1, . . . , ηN ∈ Sm, and any non–zero
vector (a1, . . . , aN)T ∈ RN ,

N∑
i=1

N∑
j=1

aiajK(ηi · ηj) ≥ 0.(1.1)

Schoenberg [8] has shown that if the function K admits the uniformly convergent
series expansion

K(t) =
∞∑
n=0

knPn(t), t ∈ [−1, 1],(1.2)

in terms of certain Legendre (or Gegenbauer or ultraspherical) polynomials, a suf-
ficient condition for (1.1) is that kn ≥ 0, n = 0, 1, . . . .

However, when dealing with problems of interpolation, a stronger condition on
the kernel K is useful: K is called strictly positive definite, if the quadratic form
(1.1) is strictly positive for any set {η1, . . . , ηN} ⊂ Sm of pairwise distinct points
and any choice of a non–zero vector (a1, . . . , an)T ∈ RN . A sufficient condition for
strict positive definiteness is, as shown by Xu and Cheney [11], that all the kn in
the expansion (1.2) are positive. By a completely different idea we will show in
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this paper that, even if finitely many kn are zero, the kernel K is strictly positive
definite.

The value of this result can be explained as follows: assume that a function
F : Sm → R is known only at finitely many distinct points η1, . . . , ηN ∈ Sm and
one looks for an interpolant of the form

S(ξ) =
N∑
i=1

aiK(ηi · ξ)(1.3)

satisfying the interpolation conditions S(ηi) = F (ηi), i = 1, . . . , N . Then the linear
system to be solved is K(η1 · η1) · · · K(ηN · η1)

...
. . .

...
K(η1 · ηN ) · · · K(ηN · ηN )


 a1

...
aN

 =

 F (η1)
...

F (ηN )

 .

If K is strictly positive definite then the matrix is positive definite, i.e. the inter-
polation problem is solvable for any choice of pairwise distinct nodal points.

In practice, however, there is often more information on the function F available,
e.g. the low order moments of F in terms of its spherical harmonic expansion. In
this case, it is desirable to use kernels K in (1.3) which are orthogonal to these low
order spherical harmonics and to perform the interpolation only for the difference
between the function values F (ηi) and the values of the known projection of F
to the span of the spherical harmonics under consideration. But orthogonality of
the kernel K to spherical harmonics means that the corresponding coefficients kn
are zero. Thus, the condition given in [11] cannot be satisfied. In this case our
stronger result is necessary. An example for such a situation is the approximation
of the gravitational potential of the earth. From physical properties and measure-
ments of satellite orbits the contribution of the lower order spherical harmonics are
known with a sufficient accuracy, so that e.g. for space borne gradiometry data this
approach is very useful, cf. e.g. [4], [7], [9].

The outline of this paper is organized as follows: after some preliminaries, we
develop an easy–to–handle equivalent condition for strict positive definiteness. Af-
ter that, we construct a special strictly positive definite function with vanishing
moments, and use afterwards this kernel, which turns out to be a spherical approx-
imate identity, for the proof of our main result.

2. Preliminaries

Asume m ≥ 1 to be a fixed integer for the further investigations. Let · and | · |
denote the usual inner product and the Euclidean norm in Rm+1, respectively, and
let Sm = {ξ ∈ Rm+1||ξ| = 1} be the m–dimensional unit sphere in Rm+1. We write
dωm for the induced surface element of Sm. Then it is well-known that the volume
of Sm is given by

ωm =

∫
Sm

dωm =
2π

m+1
2

Γ((m+ 1)/2)
.

We denote the space of continuous respectively square–integrable functions defined
on Sm by C(Sm) or L2(Sm). The standard L2(Sm)–inner product is written as

(F,G) =

∫
Sm

F (ξ)G(ξ)dωm(ξ), F,G ∈ L2(Sm).



STRICTLY POSITIVE DEFINITE FUNCTIONS ON SPHERES 533

In the following, we repeat some basic facts on spherical harmonics and Legendre
polynomials. Details can be found e.g. in [6]. Let Harmn be the space of all spherical
harmonics Yn : Sm → R of order n, i.e. Yn ∈ Harmn if and only if x 7→ |x|nYn(x/|x|)
is a homogeneous harmonic polynomial of degree n. The dimension of Harmn is

N(m,n) = dim Harmn =
2n+m− 1

n

(
n+m− 2

n− 1

)
.

If Yp ∈ Harmp and Yq ∈ Harmq with p 6= q then (Yp, Yq) = 0, i.e. spherical
harmonics of different order are orthogonal. We assume that {Yn,1, . . . , Yn,N(m,n)}
is an orthonormal basis of Harmn. For p ∈ N0, we let Harm0,... ,p =

⊕p
n=0 Harmn.

The addition theorem for spherical harmonics reads as follows:

N(m,n)∑
j=0

Yn,j(ξ)Yn,j(η) =
N(m,n)

ωm
Pn(ξ · η), ξ, η ∈ Sm,(2.1)

where Pn are the (generalized) Legendre polynomials of degree n. They are defined
by the requirements

1. Pn is a polynomial of degree n,

2.

∫ 1

−1

tlPn(t)(1− t2)
m−2

2 dt = 0, l = 0, . . . , n− 1,

3. Pn(1) = 1.

It follows from (2.1) for fixed η ∈ Sm that Pn( ·η) ∈ Harmn and that for all
Yn ∈ Harmn

Yn(ξ) = (Yn,
N(m,n)

ωm
Pn(ξ· )), ξ ∈ Sm,

i.e. N(m,n)
ωm

Pn( · ) is the reproducing kernel of Harmn, cf. [1]. Applying the Cauchy–

Schwarz inequality to (2.1), it can be easily deduced that |Pn(t)| ≤ Pn(1) = 1 for
all t ∈ [−1, 1]. Furthermore, the Fourier series of a square–integrable function
F ∈ L2(Sm) can be written as

F ∼
∞∑
n=0

N(m,n)

ωm

∫
Sm

F (η)Pn( ·η)dωm(η).(2.2)

If G ∈ L2[−1, 1], we obtain for fixed η ∈ Sm for the η–zonal function ξ 7→ G(ξ ·η),
ξ ∈ Sm,∫

Sm

G(ξ · η)Yn(η)dωm = ωm−1

∫ 1

−1

G(t)Pn(t)(1− t2)
m−2

2 dtYn(ξ), ξ ∈ Sm.(2.3)

This formula of Funk and Hecke allows to obtain the Fourier coefficients of an η–
zonal function by a simple one–dimensional integration. Together with the addition
theorem we conclude that the Fourier expansion of G( ·η) is given by

G( ·η) ∼
∞∑
n=0

N(m,n)ωm−1

ωm

∫ 1

−1

G(t)Pn(t)(1− t2)
m−2

2 dtPn( ·η).(2.4)

Note that the Legendre polynomials are also expressible (for m ≥ 2) by the
generating function

1

(1− 2rt+ r2)
m−1

2

=
∞∑
n=0

(
n+m− 2

n

)
Pn(t)rn, |r| < 1, t ∈ [−1, 1].
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This shows that the Legendre polynomials are up to a constant the Gegenbauer or
ultraspherical polynomials Cλn with λ = (m− 1)/2, cf. e.g. [10].

For r ∈ (0, 1) the uniform convergent series

Qr(t) =
∞∑
n=0

N(m,n)

ωm
rnPn(t), t ∈ [−1, 1],

has the explicit representation

Qr(t) =
1− r2

(1− 2rt+ r2)
m+1

2

,

which is known as Poisson–kernel. The basic property of Qr for our purposes is
described in

Theorem 2.1. Let F : Sm → R be continuous. Then

lim
r→1
r<1

sup
ξ∈Sm

|F (ξ)−
∫
Sm

Qr(ξ · η)F (η)dωm(η)| = 0.

This theorem shows that Qr is an approximate identity in the space C(Sm), cf.
e.g. [2]. We will need a slight generalization of this result. We define for p ∈ N0

Q0,... ,p⊥
r (t) = Qr(t)−

p∑
n=0

N(m,n)

ωm
rnPn(t).

Then it holds obviously (Qr(η· ), Yn) = 0 for all Yn ∈ Harmn, n = 0, . . . , p.
Furthermore, we easily obtain

Corollary 2.2. Let F ∈ C(Sm) satisfy (F, Yn) = 0 for all Yn ∈ Harmn, n =
0, . . . , p. Then

lim
r→1
r<1

sup
ξ∈Sm

|F (ξ)−
∫
Sm

Q0,... ,p⊥
r (ξ · η)F (η)dωm(η)| = 0.

3. Strictly positive definite kernels

Let K : [−1, 1] → R be continuous and assume that K admits the uniformly
convergent series expansion

K(t) =
∞∑
n=0

knPn(t)(3.1)

with constants kn ∈ R. Note that |Pn(t)| ≤ Pn(1), t ∈ [−1, 1], implies that the series
(3.1) is absolute and uniformly convergent, if the series

∑∞
n=0 |kn| is convergent.

Schoenberg [8] has shown that such a function K is positive definite if kn ≥ 0 for
all n ∈ N. The strict positive definiteness can be characterized by

Lemma 3.1. Let K : [−1, 1] → R be continuous with uniformly convergent se-
ries expansion (3.1) and kn ≥ 0 for all n ≥ 0. Then K is strictly positive
definite if and only if for all pairwisely distinct η1, . . . , ηN ∈ Sm the functions
K(η1· ), . . . ,K(ηN · ) are linearly independent.

Proof. Since kn ≥ 0 and
∑∞
n=0 kn <∞ it follows from [1] that K̃ : Sm × Sm → R,

defined by K̃(ξ, η) = K(ξ · η), ξ, η ∈ Sm, is the reproducing kernel of a Hilbert
space (H, (·, ·)H) with orthonormal basis {(ωmkn/N(m,n))1/2Yn,j | n = 0, . . . , j =
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1, . . . , N(m,n), kn 6= 0}. Thus, K(ηi · ηj) = (K(ηi· ),K(ηj · ))H, and therefore the
matrix  K(η1 · η1) · · · K(η1 · ηN )

...
. . .

...
K(ηN · η1) · · · K(ηN · ηN )


turns out to be a Gram matrix with respect to K(η1· ), . . . ,K(ηN · ), and is there-
fore positive definite if and only if the functions K(η1· ), . . . ,K(ηN · ) are linearly
independent.

4. A special strictly positive definite function

In this section it is proved that the function Q0,... ,p⊥
r is strictly positive definite

for any p ∈ N. We start with

Lemma 4.1. Let p ∈ N0, η ∈ Sm. Then there exists to any ε > 0 a continuous
function H : Sm → R with the following properties:

1. H(η) = 1,
2. suppH ⊂ {ξ ∈ Sm| |ξ − η| < ε},
3. (H,Yn) = 0 for all Yn ∈ Harmn, n = 0, . . . , p.

Since the proof of this lemma is rather technical we shift it to the end of this
paper.

Fundamental is

Theorem 4.2. Let r ∈ (0, 1), p ∈ N0. Then the function Q0,... ,p⊥
r is strictly

positive definite.

Proof. Let η1, . . . , ηN ∈ Sm be pairwise distinct. According to Lemma 3.1 we shall
show that the functions Q0,... ,p⊥

r (η1· ), . . . , Q0,... ,p⊥
r (ηN · ) are linearly independent.

Assume therefore that for a1, . . . , aN ∈ R
N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ) = 0.

Since the series of Q0,... ,p⊥
r in terms of the Legendre polynomials is uniformly con-

vergent, it follows for all ξ ∈ Sm, n ≥ p+ 1,

0 = (
N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ),

N(m,n)

ωm
Pn( ·ξ))

=
N∑
i=1

air
nPn(ηi · ξ)

= rn
N∑
i=1

aiPn(ηi · ξ).

Thus,
∑N
i=1 aiPn(ηi· ) = 0 for all n ≥ p + 1. The same calculation performed in

the backward direction implies then

N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ) = 0(4.1)

for all r ∈ (0, 1).
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Now, let i∗ ∈ {1, . . . , N} be fixed, and choose ε < ΘN , where the nodal width
ΘN is given by

ΘN = max
j=1,... ,N

sup
j 6=i
|ηi − ηj |.

For this ε and η = ηi∗ let H ∈ C(Sm) have the properties of Lemma 4.1. Then we
conclude from Corollary 2.2 and the fact that H(ηi) = 0 if i 6= i∗,

ai∗ =
N∑
i=1

aiH(ηi) = lim
r→1
r<1

(
N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ), H).

On the other hand side it follows from (4.1) that for all r ∈ (0, 1)

(
N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ), H) = 0.

Thus, ai∗ = 0. Since i∗ ∈ {1, . . . , N} was chosen arbitrarily, it follows a1 = . . . =
aN = 0, and hence the functions Q0,... ,p⊥

r (η1· ), . . . , Q0,... ,p⊥
r (ηN · ) are linearly

independent, as required.

Remark 4.3. It follows by similar (and even easier) arguments that Qr is strictly
positive definite. We omit the details.

5. The main result

The considerations of the last chapters allow us to prove the main result:

Theorem 5.1. Let K : [−1, 1]→ R be a continuous kernel with uniformly conver-
gent series expansion

K(t) =
∞∑
n=0

knPn(t).(5.1)

Assume that kn ≥ 0, n ∈ N, and only finitely many kn are zero. Then K is strictly
positive definite.

Proof. Let p denote the index of the largest integer n for that kn = 0. Then kn > 0
for all n > p. Assume that η1, . . . , ηN ∈ Sm are pairwise distinct. We shall show
that K(η1· ), . . . ,K(ηN · ) are linearly independent.

If
∑N
i=1 aiK(ηi· ) = 0, similar arguments as in the proof of Theorem 4.2 provide

that
N∑
i=1

aiPn(ηi· ) = 0(5.2)

for all n for which kn > 0. In particular, (5.2) is true for all n > p. But then it
follows that for every r ∈ (0, 1)

N∑
i=1

aiQ
0,... ,p⊥
r (ηi· ) = 0.

We know from Theorem 4.2 that Q0,... ,p⊥
r is strictly positive definite, therefore

a1 = . . . = aN = 0. Hence, K is strictly positive definite.

Since all the Legendre coefficients of Qr are positive, similar arguments as above
together with Remark 4.3 prove the result of Xu and Cheney [11]:
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Corollary 5.2. If all the kn in (5.1) are positive then K is strictly positive definite.

The question whether a weaker condition than the one of Theorem 4.2 is sufficient
for strict positive definiteness is still open. We show by an easy example that the
condition that finitely many kn are greater than zero is not sufficient for strict
positive definiteness: let m = 2 and assume that the kn of the uniformly convergent
series expansion of a kernel K are zero for odd n and greater than zero for even n.
The kernel K is then an even function. If we choose η1 to be the North Pole and
η2 to be the South Pole, K satisfies K(η1 · ξ) = K(η2 · ξ), ξ ∈ Sm. Thus, K(η1· )
and K(η2· ) are linearly dependent, and so K is not strictly positive definite.

Appendix: Proof of Lemma 4.1

Lemma 4.1 follows immediately, if we can construct for any β > 0 and all p ∈ N0

a continuous function L : [−1, 1]→ R with the properties

1. L(1) = 1,
2. suppL ⊂ [1− β, 1],

3.

∫ 1

−1

L(t)Pn(t)(1− t2)
m−2

2 dt = 0, n = 0, . . . , p,

since then the function H ∈ C(Sm) defined by H(ξ) = L(η · ξ), ξ ∈ Sm, satisfies all
requirements of Lemma 4.1 with ε = (2β)1/2.

We will show now how a function L satisfying 1. – 3. can be constructed for a
given β > 0 and p ∈ N0. Assume first that m is even. Choose real numbers hi with
1− β ≤ h0 < h1 < . . . hm+p+3 < 1. We define for t ∈ [−1, 1]

A0(t) =
(t− h0)+

1− h0
,

and for any given h ∈ (−1, 1)

Bh(t) = (1− t2)(t− h)+,

where t+ means, as usual,

t+ =

{
t for t ≥ 0,
0 for t < 0.

Setting especially h = hi, i = 1, . . . ,m+ p+ 3, it follows easily that the functions
A0, Bhi , i = 1, . . . ,m + p + 3, are linearly independent. Furthermore, they are
Lipschitz–continuous functions with suppA0 = [h0, 1] and suppBhi = [hi, 1], i =
1, . . . ,m+ p+ 3. It can be deduced from the Lipschitz continuity (cf. [5]) that the
Fourier series (2.4) of A0 and Bhi are uniformly convergent, i.e.

Bhi(t) =
∞∑
n=0

N(m,n)

ωm
B∧hi(n)Pn(t),

with

B∧hi(n) = ωm−1

∫ 1

−1

Bhi(t)Pn(t)(1− t2)
m−2

2 dt.

(A similar result holds for A0.)
We are looking for a function L of the form

L(t) = A0(t)−
m+p+3∑
i=1

biBhi(t), t ∈ [−1, 1],
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with parameters bi to be determined. It can be easily deduced that the conditions
1. and 2. are fulfilled for any choice of b1, . . . , bm+p+3. Condition 3. is equivalent
to the equations

A∧0 (n)−
m+p+3∑
i=1

biB
∧
hi(n) = 0, n = 0, . . . , p.(5.3)

In order to study these equations, we see first that since A0 ≥ 0 and A0(1) = 1 it
follows that A∧0 (0) > 0. Thus, (5.3) is the linear system of equations B∧h1

(0) · · · B∧hm+p+3
(0)

...
. . .

...
B∧h1

(p) · · · B∧hm+p+3
(p)


 b1

...
bm+p+3

 =

 A∧0 (0)
...

A∧0 (p)


with non–vanishing right hand side. To get more information on the matrix entries,
we see that

B∧h (n) =

∫ 1

−1

(t− h)+(1− t2)Pn(t)(1− t2)
m−2

2 dt

=

∫ 1

h

(t− h)Pn(t)(1− t2)
m
2 dt

is a polynomial in the variable h of degree m + n + 2. In order to ensure the
solvability of the above system, we enlarge it to

1 · · · 1
h1 · · · hm+p+3

...
. . .

...
hm+1

1 · · · hm+1
m+p+3

B∧h1
(0) · · · B∧hm+p+3

(0)
...

. . .
...

B∧h1
(p) · · · B∧hm+p+3

(p)



 b1
...

bm+p+3

 =



0
0
...
0

A∧0 (0)
...

A∧0 (p)


.(5.4)

This linear system, now, can be seen to come from the one–dimensional polyno-
mial interpolation problem with nodal points h1, . . . , hm+p+3, data values 0, . . . , 0,
A∧0 (0), . . . , A∧0 (p), and trial functions {1, h, . . . , hm+1, B∧h (0), . . . , B∧h (p)} being
polynomials of degrees 0, . . . ,m + p + 2. Since we know from e.g. Davis [3] that
this system is unisolvent, there exists a unique solution of (5.4) which also solves
then (5.3), and hence fulfills the third requirement.

If m is odd, we can apply the same arguments, but to achieve that the B∧h (n)
are polynomials in h, one has to modify the defining equation of the function Bh.
For odd m the definition

Bh(t) = (1− t2)
3
2 (t− h)+

will ensure that the above arguments can be applied.
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