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Abstract. We generalize a number of results in the literature by proving the
following theorem: Let R be a semiprime ring, D a nonzero derivation of R, L
a nonzero left ideal of R, and let [x, y] = xy− yx. If for some positive integers
t0, t1, . . . , tn, and all x ∈ L, the identity [[. . . [[D(xt0), xt1 ], xt2 ], . . . ], xtn ] = 0
holds, then either D(L) = 0 or else the ideal of R generated by D(L) and
D(R)L is in the center of R. In particular, when R is a prime ring, R is
commutative.

In this paper we prove a theorem generalizing several results, principally [20]
and [9], which combine derivations with Engel type conditions. Before stating our
theorem we discuss the relevant literature. If one defines [x, y]0 = x and [x, y]1 =
[x, y] = xy − yx, then an Engel condition is a polynomial [x, y]n+1 = [[x, y]n, y] in
noncommuting indeterminates. A commutative ring satisfies any such polynomial,
and a nilpotent ring satisfies one if n is sufficiently large. The question of whether
a ring is commutative, or nilpotent, if it satisfies an Engel condition goes back
to the well known work of Engel on Lie algebras [15, Chapter 2], and has been
considered, with various modifications, by many since then (e.g. [2] or [7]). The
connection of Engel type conditions and derivations appeared in a well known paper
of E. C. Posner [23] which showed that for a nonzero derivation D of a prime ring
R, if [D(x), x] is central for all x ∈ R, then R is commutative. This result has
led to many others (see [19] for various references), and in particular to a result
of J. Vukman [25] showing that if [D(x), x]2 is central for all x ∈ R, a prime ring
with charR 6= 2, 3, then again R is commutative. We extended this result [20] by
proving that if [D(x), x]n = 0 for all x ∈ I, an ideal of the prime ring R, then R
is commutative, and if instead, this Engel type condition holds for all x ∈ U , a Lie
ideal of R, then R embeds in M2(F ) for F a field with charF = 2. Recently, [9]
proved that for a left ideal L of a semiprime ring R, either D(L) = 0 or R contains
a nonzero central ideal if either: R is 6-torsion free and [D(x), x]2 is central for all
x ∈ L; or if [D(x), xn] is central for all x ∈ L and R is n!-torsion free. The first
of these conditions generalized [1, Theorem 3, p. 99], which assumed that [D(x), x]
is central for all x ∈ L, with no restriction on torsion. The second, involving
powers, is related to both [12], which showed that a prime ring R is commutative
if D(xk) = 0 for all x ∈ R, and to [8], a significant extension of [12], showing that
R is commutative if it contains no nonzero nil ideal and [D(xk(x)), xk(x)]n = 0 on
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R. Other results and conditions involving the image of a derivation on a one-sided
ideal of R have been appearing with increased frequency (e.g. [3], [4], [21], [24]).

Our result here combines a variant of the Engel condition and the action of a
derivation on a left ideal in a semiprime ring. It generalizes or extends a number
of the results mentioned above and eliminates all torsion assumptions.

Main Theorem. Let R be a semiprime ring, D a nonzero derivation of R, and L
a nonzero left ideal of R. If for some positive integers t0, t1, . . . , tn, and all x ∈ L,
the identity [[. . . [[D(xt0), xt1 ], xt2 ], . . . ], xtn ] = 0 holds, then either D(L) = 0 or
else D(L) and D(R)L are contained in a nonzero central ideal of R. In particular,
when R is a prime ring, R is commutative.

Note that the statement about prime rings does follow from the semiprime case
since if I is a central ideal in a prime ring R, then the identity [xy, z] = x[y, z] +
[x, z]y shows that 0 = [IR,R] = I[R,R], so I = 0 or R is commutative. Also,
when R is prime and D(L) = 0, then D(R)L = D(RL) = 0, and D = 0 results.
Something like the conclusion that R contains a central ideal is the most that
one can expect since R could be the direct sum of ideals A,B, and G, with G
commutative, I = B + G,D(A) 6= 0, D(B) = 0 and D(G) ⊆ G. In this case D(I)
is central but D(I) 6= 0 and I itself is not central.

The heart of our proof of the Main Theorem is a special case for prime rings.
The basic approach and ideas are like those in [20], so we first recall the basic
notions required ([6] or [18]). If R is a prime ring, its extended centroid C(R) = C
is a field which is the center of the symmetric quotient ring Q = Q(R) of R. For
our purposes it suffices to know that RC and Q are prime overrings of R, for each
q ∈ Q there is a nonzero ideal Iq of R with qIq + Iqq ⊆ R, and if qIq = 0, then
q = 0. Any derivation D of R extends uniquely to Q, and if on Q,D(q) = qA−Aq
for A ∈ Q, then D is called inner ; otherwise D is outer. An important result of
W. S. Martindale [22] is that R satisfies a generalized polynomial identity exactly
when H = socRC 6= 0 and for each minimal left ideal RCe of RC with e2 = e,
eRCe is a finite dimensional divisional algebra over C.

Theorem 1. Let R be a prime ring, D a nonzero derivation of R, and L a nonzero
left ideal of R. If for integers k, n+ 1 ≥ 1, [D(xk), xk]n = 0 for all x ∈ L, then R
is commutative.

Proof. It is easy to see that if L ⊆ R ∩ C, then R must be commutative [14,
Corollary, p. 7], so we may choose a ∈ L−C. For any r ∈ R, [D((ra)k), (ra)k]n = 0,
and it follows that

[D((Xa)k), (Xa)k]n =

[
k−1∑
i=0

(Xa)i(XDa+XD(a))(Xa)k−i−1, (Xa)k

]
n

is an identity with derivation which is satisfied by R. If D is an outer derivation, a
direct application of [17, Theorem 2, p. 65] or [6, Main Theorem, p. 251], together

with [5, Theorem 2, p. 725] show that [
∑k−1
i=0 (Xa)i(Y a+XD(a))(Xa)k−i−1, (Xa)k]n

is an identity for Q, which yields easily that [
∑k−1
i=0 (Xa)i(Y a)(Xa)k−i−1, (Xa)k]n

is an identity for Q by first setting Y = 0. Since a /∈ C, this identity is a nonzero
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generalized polynomial identity for R, so by Martindale’s theorem [22, Theorem 3,
p. 579]H = socRC 6= 0. Clearly the identity holds on H ⊆ Q. If H is commutative,
then so is R and we are finished. Otherwise, since Ha ⊆ H [18, Lemma 7, p. 779],
there is a minimal left ideal He ⊆ Ha with e2 = e ∈ H and Hta = He for some
t ∈ H. Consequently, He satisfies [

∑k−1
i=0 X

iY Xk−i−1, Xk]n = 0. Evaluating this
expression with X = he and Y = (1 − e)ye for arbitrary h, y ∈ H, and using
he(1 − e)ye = 0 results in (1 − e)ye(he)k(n+1)−1 = 0. Because He is minimal, if
(1 − e)ye 6= 0, it follows that He = H(1 − e)ye, so (he)k(n+1) = 0 results. This
means that He is a nil left ideal of bounded index and Levitzki’s theorem [13,
Lemma 1.1, p. 1] forces R to contain a nonzero nilpotent ideal. This contradiction
shows that R must be commutative when D is outer.

We may now take D(q) = [q, A] with A ∈ Q− C, since D 6= 0. As above, if we
choose a ∈ L−C, then our assumption yields the identity [A, (ra)k]n+1 = 0 for R.
This is a nonzero generalized polynomial identity because A /∈ C, so Martindale’s
theorem [22, Theorem 3, p. 579] shows that H = socRC 6= 0 and eHe is finite
dimensional over C for e2 = e a minimal idempotent in H. Now the identity
[A, (Xa)k]n+1 is also satisfied by Q [5, Theorem 2, p. 725] and hence by H. As in
the case above, R is commutative if H is, so we proceed with the assumption that
H is not commutative to get the contradiction D = 0.

We want to replace R with H and be able to assume that for any minimal
idempotent e ∈ H,Ce = eHe. We note that C = C(H), CH = H and D(H) ⊆ H
[18, Lemma 7, p. 59], and C centralizes H, so it is clear that Ce ⊆ Z(eHe) for
any idempotent e ∈ H. Assume first that C is a finite field. From the finite
dimensionality of eHe over Ce it follows that eHe is a finite field, so for z ∈ eHe
and any h ∈ H, zehe = ehez, which forces ze = ce for c ∈ C(H) = C [22, Theorem
1, p. 577]. Therefore Ce = Z(eHe) = eHe when C is a finite field. If C is infinite,
then a Vandermonde determinant argument, for example that in [20, Lemma 2,
p. 732], shows that [A, (Xa)k]n+1 is satisfied by any extension H ⊗C F of H, for F
a field extension of C. In particular we can take F to be an algebraic closure of C.
Now C(H ⊗C F ) = F [10, Theorem 3.5, p. 59], soc(RC ⊗C F ) = H ⊗C F , and for
any minimal idempotent e ∈ H ⊗C F , e(H ⊗C F )e is finite dimensional over eF ,
again by [22], so e(H⊗C F )e = eF because F is algebraically closed. Consequently,
regardless of cardC, we may assume that H = R and eC = eHe for any minimal
idempotent e ∈ H.

Since H satisfies the identity [A, (Xa)k]n+1, as for the case above when D was
assumed to be outer, for some minimal idempotent e ∈ H and some t ∈ H, He =
Hta satisfies the identity [A,Xk]n+1. In particular if X = e we obtain [A, e]n+1 = 0
and also [A, e]n+2 = 0. Since one of n + 1 or n + 2 is odd and [A, e] = [A, e]3, it
follows immediately that [A, e] = 0, and we may write A = eAe+(1−e)A(1−e). But
eAe = e(Ae)e ∈ eHe = Ce, so A = ce+(1−e)A(1−e). For any h ∈ H we evaluate

[A, (he)k]n+1 = 0 using the identities [y, x]n+1 =
∑n+1
i=0 (−1)i

(
n+1
i

)
xiyxn+1−i and

[x+ y, z]s = [x, z]s + [y, z]s to obtain

0 = (1− e)A(1− e)(he)k(n+1) +
n+1∑
i=0

(−1)i
(
n+ 1

i

)
(he)kiec(he)k(n+1−i)

= (1− e)A(1− e)(he)k(n+1) + ec(he)k(n+1)

+ c
n+1∑
i=1

(−1)i
(
n+ 1

i

)
(he)kie(he)k(n+1−i)
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= (1− e)A(1− e)(he)k(n+1) + ec(he)k(n+1) − c(he)k(n+1)

= (1− e)A(1− e)(he)k(n+1) − (1− e)c(he)k(n+1)

= (1− e)(A− c)(1− e)(he)k(n+1).

Hence (A−c)(he)k(n+1) = (A−c)(e+(1−e))(he)k(n+1) = (A−c)(1−e)(he)k(n+1) = 0
since Ae = ce and (A−c)(1−e) = (1−e)(A−c)(1−e). A result of B. Felzenszwalb
[11, Theorem 2, p. 242] shows that in a ring with no nonzero nil left ideal, if
yts = 0 for all t ∈ L, a nonzero left ideal, then yL = 0. Therefore, we have
(A − c)He = 0, forcing A = c ∈ C and D = 0, a contradiction. Consequently, R
must be commutative, completing the proof of the theorem.

The special case of Theorem 1 when n = 0 gives [12, Theorem 2, p. 19], since
kD(x)xk−1 = D(xk) = 0 forces charR = p|k. Also, the theorem is a version of
[8, Corollary 1, p. 36] for left ideals where we must assume that the exponents k
are fixed but need not assume that R has no nil ideal. Before proving our Main
Theorem, it will be helpful to collect a few observations together into a lemma.

Lemma. Let R be a semiprime ring and M the maximal central ideal of R.

(1) M = ann([R,R]) is a semiprime ideal of R;
(2) if a ∈ R and Ra is central, then a ∈M ; and
(3) if D is a derivation of R, then D(M) ⊆M .

Proof. Since any annihilator ideal in a semiprime ring is a semiprime ideal, it suffices
to show that M = ann([R,R]) to prove (1). Let A = ann([R,R]) and note that
0 = [MR,R] = M [R,R], so M ⊆ A. But [A,R] ⊆ A ∩ ([R,R]) = 0 since R is
semiprime, and A = M . Next observe that R/M has no nonzero central ideal. If
M ⊆ I is an ideal of R with I/M central in R/M , then [I,R] ⊆ M implies that
[[I,R], R] = 0, so [I, [R,R]] = 0 and I is central by [14, Lemma 1.1.8, p. 8] forcing
I = M . Consequently, if Ra+M is central in R/M , then Ra ⊆M , which results in
a ∈M by (1). Finally, for any derivation D it is easy to see that D(Z(R)) ⊆ Z(R),
the center ofR, and then that M+D(M) is an ideal of R in Z(R). Thus D(M) ⊆M
by the maximality of M .

Proof of Main Theorem. Our assumption that [[. . . [[D(xt0), xt1 ], xt2 ], . . . ], xtn ] = 0
for all x ∈ L implies that [D(xk), xk]n = 0 for k = t0t1 · · · tn since powers of x
commute, so we may as well assume that all tj = k. We claim that RD(R)L is
a central ideal of R, and is not zero unless D(L) = 0. Should D(R)L = 0, then
L ⊆ ann(D(R)), the left or right annihilator of (D(R)), the ideal D(R) generates.
It is easy to see that D(L) ⊆ D(ann(D(R))) ⊆ D(R) ∩ ann(D(R)) = 0, since R
is semiprime. Consequently, to prove the existence of a nonzero central ideal, it
suffices to assume that D(L) 6= 0 and show that RD(R)L is central. Equivalently,
we need to prove that for each prime ideal P of R, the image of RD(R)L is central
in R/P . This is clear if D(R)L ⊆ P , so we need only consider those prime ideals
with D(R)L 6⊂P .

Let P be a prime ideal of R so that D(R)L 6⊂P , and suppose that D(P ) ⊆ P .
In this case, D induces a derivation E on R/P via E(r + P ) = E(r) + P and our
hypothesis carries over from R to R/P using E and the left ideal L + P ⊆ R/P .
Applying Theorem 1 gives either E = 0, L+ P ⊆ P , or R/P commutative. Since
the first two possibilities each force D(R)L ⊆ P , we must conclude that R/P is
commutative, so RD(R)L+ P is central in R/P .
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We may assume now that D(R)L 6⊂P and D(P )6⊂P . It is straightforward to
check that D(P ) + P = B ⊆ R/P is a nonzero ideal. For any t ∈ P and y ∈
L our assumption that [D((ty + y)k), (ty + y)k]n = 0, taken modulo P becomes

[
∑k−1
i=0 y

i(D(t)y +D(y))yk−i−1, yk]n = 0 in R/P . But[
k−1∑
i=0

yiD(y)yk−i−1, yk

]
n

= [D(yk), yk]n = 0,

so [
∑k−1
i=0 y

iD(t)yk−i, yk]n = 0 in R/P , which means that the expression f(X,Y ) =

[
∑k−1
i=0 Y

iXY k−i, Y k]n yields OR/P when elements of B replace X and elements
of L + P replace Y . If for some y ∈ (L + P ) − P, yw = 0 in R/P for w ∈
R/P − OR/P , then for any b ∈ B and r ∈ R, OR/P = f(wb, ry) = wb(ry)k(n+1).

Thus wB(ry)k(n+1) = 0 in R/P , and since B is a nonzero ideal and R/P is prime,
we must conclude that Ry + P is a nil left ideal of bounded index in R/P , forcing
the contradiction y ∈ P by Levitzki’s theorem [13, Lemma 1.1, p. 1]. Therefore, we
may assume that each nonzero y ∈ L+ P has no right annihilator in R/P .

To simplify notation, we assume that R is a prime ring with a nonzero ideal B
and nonzero left ideal L whose nonzero elements are left regular, that f(X, y) is
an identity for B for each y ∈ L, and show that R is commutative. Expanding
f(X, y) for y ∈ L − 0, yields the identity

∑v
j=0 njy

jXyv−j for B, where nj are

integers, n0 = 1, and v = k(n + 1). This is a generalized linear identity for
B, so by [18, Lemma 1, p. 766], {1, y, . . . , yv} must be C(R) dependent. Let
m(y) = ys + · · · + c1y + c0 = 0 with ci ∈ C(R) and s minimal. The definition
of Q allows us to choose a nonzero ideal I of R so that all ciI ⊆ R. Thus if
c0 = 0 and m(y) = yg(y), then g(y)I ⊆ R, so g(y)I is in the right annihilator of
y, and g(y)I = 0 forces g(y) = 0, contradicting the minimality of s. Therefore
c0 6= 0 and J = c0I = Ic0 ⊆ Ry. Now f(X,Y ) is a polynomial identity for
B ∩ J ⊆ L, and so for its central localization, a finite dimensional central simple
algebra [16, Theorem 2, p. 57]. Applying [20, Lemma 2, p. 732] shows that B ∩ J
is commutative or that f(X,Y ) is an identity for some Md(F ) for F a field and
d > 1. But f(e12, e22) = e12 6= 0, for e12 and e22 matrix units in Md(F ), so B∩J is
commutative, forcing R to be commutative [14, Corollary, p. 7], and showing that
our original semiprime ring must contain the nonzero central ideal RD(R)L.

Finally, we must show that D(L), D(R)L ⊆M , the maximal central ideal of our
semiprime ring R. We have just proven that RD(R)L ⊆ M , so by the Lemma
D(R)L ⊆M and D(R)D(L) ⊆ D(D(R)L) +D2(R)L ⊆ D(M) +M = M . Hence

D(L)RD(L) ⊆ D(LR)D(L) +M ⊆M,

and the semiprimeness of M by the Lemma forces D(L) ⊆M . Therefore, the proof
of the Main Theorem is complete.

It is clear that the Main Theorem generalizes both [9] and [20], and in the way we
mentioned after Theorem 1, [8] as well. We end the paper with another consequence
of the Main Theorem by giving an extension to one-sided ideals of [2, Theorem 3,
p. 385] and [7, Theorem 2, p. 120].

Theorem 2. Let R be a semiprime ring and L a nonzero left ideal of R. If for
integers n, k ≥ 1, and some a ∈ R, [a, xk]n = 0 for all x ∈ L, then [a, L] = 0. When
R is a prime ring, then a ∈ Z(R), the center of R.
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Proof. Define a derivation D of R by D(r) = [r, a]. Then for all x ∈ L,

−[D(xk), xk]n−1 = [−D(xk), xk]n−1 = [a, xk]n = 0.

By the Main Theorem, either D = 0 or D(L) ⊆ Z(R). When D = 0, a ∈ Z(R)
is immediate, and when D(L) ⊆ Z(R), [[a, L], R] = 0. In particular, if y ∈ L and
r ∈ R, then

0 = [[a, ay], r] = [a[a, y], r] = [a, r][a, y],

so letting r = ys for s ∈ R shows that [a, y]R[a, y] = 0. Since R is semiprime we
are forced to conclude that [a, L] = 0. When R is prime, 0 = [a,RL] = [a,R]L, so
a ∈ Z(R), proving the theorem.
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