PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 2, February 1997, Pages 339–345 S 0002-9939(97)03673-3

AN ENGEL CONDITION WITH DERIVATION FOR LEFT IDEALS

CHARLES LANSKI

(Communicated by Ken Goodearl)

ABSTRACT. We generalize a number of results in the literature by proving the following theorem: Let R be a semiprime ring, D a nonzero derivation of R, L a nonzero left ideal of R, and let [x, y] = xy - yx. If for some positive integers t_0, t_1, \ldots, t_n , and all $x \in L$, the identity $[[\ldots [[D(x^{t_0}), x^{t_1}], x^{t_2}], \ldots], x^{t_n}] = 0$ holds, then either D(L) = 0 or else the ideal of R generated by D(L) and D(R)L is in the center of R. In particular, when R is a prime ring, R is commutative.

In this paper we prove a theorem generalizing several results, principally [20] and [9], which combine derivations with Engel type conditions. Before stating our theorem we discuss the relevant literature. If one defines $[x, y]_0 = x$ and $[x, y]_1 =$ [x, y] = xy - yx, then an Engel condition is a polynomial $[x, y]_{n+1} = [[x, y]_n, y]$ in noncommuting indeterminates. A commutative ring satisfies any such polynomial, and a nilpotent ring satisfies one if n is sufficiently large. The question of whether a ring is commutative, or nilpotent, if it satisfies an Engel condition goes back to the well known work of Engel on Lie algebras [15, Chapter 2], and has been considered, with various modifications, by many since then (e.g. [2] or [7]). The connection of Engel type conditions and derivations appeared in a well known paper of E. C. Posner [23] which showed that for a nonzero derivation D of a prime ring R, if [D(x), x] is central for all $x \in R$, then R is commutative. This result has led to many others (see [19] for various references), and in particular to a result of J. Vukman [25] showing that if $[D(x), x]_2$ is central for all $x \in R$, a prime ring with char $R \neq 2, 3$, then again R is commutative. We extended this result [20] by proving that if $[D(x), x]_n = 0$ for all $x \in I$, an ideal of the prime ring R, then R is commutative, and if instead, this Engel type condition holds for all $x \in U$, a Lie ideal of R, then R embeds in $M_2(F)$ for F a field with char F = 2. Recently, [9] proved that for a left ideal L of a semiprime ring R, either D(L) = 0 or R contains a nonzero central ideal if either: R is 6-torsion free and $[D(x), x]_2$ is central for all $x \in L$; or if $[D(x), x^n]$ is central for all $x \in L$ and R is n!-torsion free. The first of these conditions generalized [1, Theorem 3, p. 99], which assumed that [D(x), x]is central for all $x \in L$, with no restriction on torsion. The second, involving powers, is related to both [12], which showed that a prime ring R is commutative if $D(x^k) = 0$ for all $x \in R$, and to [8], a significant extension of [12], showing that R is commutative if it contains no nonzero nil ideal and $[D(x^{k(x)}), x^{k(x)}]_n = 0$ on

 \odot 1997 American Mathematical Society

Received by the editors August 2, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 16W25; Secondary 16N60, 16U80.

CHARLES LANSKI

R. Other results and conditions involving the image of a derivation on a one-sided ideal of R have been appearing with increased frequency (e.g. [3], [4], [21], [24]).

Our result here combines a variant of the Engel condition and the action of a derivation on a left ideal in a semiprime ring. It generalizes or extends a number of the results mentioned above and eliminates all torsion assumptions.

Main Theorem. Let R be a semiprime ring, D a nonzero derivation of R, and L a nonzero left ideal of R. If for some positive integers t_0, t_1, \ldots, t_n , and all $x \in L$, the identity $[[\ldots [[D(x^{t_0}), x^{t_1}], x^{t_2}], \ldots], x^{t_n}] = 0$ holds, then either D(L) = 0 or else D(L) and D(R)L are contained in a nonzero central ideal of R. In particular, when R is a prime ring, R is commutative.

Note that the statement about prime rings does follow from the semiprime case since if I is a central ideal in a prime ring R, then the identity [xy, z] = x[y, z] + [x, z]y shows that 0 = [IR, R] = I[R, R], so I = 0 or R is commutative. Also, when R is prime and D(L) = 0, then D(R)L = D(RL) = 0, and D = 0 results. Something like the conclusion that R contains a central ideal is the most that one can expect since R could be the direct sum of ideals A, B, and G, with G commutative, $I = B + G, D(A) \neq 0, D(B) = 0$ and $D(G) \subseteq G$. In this case D(I)is central but $D(I) \neq 0$ and I itself is not central.

The heart of our proof of the Main Theorem is a special case for prime rings. The basic approach and ideas are like those in [20], so we first recall the basic notions required ([6] or [18]). If R is a prime ring, its extended centroid C(R) = Cis a field which is the center of the symmetric quotient ring Q = Q(R) of R. For our purposes it suffices to know that RC and Q are prime overrings of R, for each $q \in Q$ there is a nonzero ideal I_q of R with $qI_q + I_qq \subseteq R$, and if $qI_q = 0$, then q = 0. Any derivation D of R extends uniquely to Q, and if on Q, D(q) = qA - Aqfor $A \in Q$, then D is called *inner*; otherwise D is *outer*. An important result of W. S. Martindale [22] is that R satisfies a generalized polynomial identity exactly when $H = \operatorname{soc} RC \neq 0$ and for each minimal left ideal RCe of RC with $e^2 = e$, eRCe is a finite dimensional divisional algebra over C.

Theorem 1. Let R be a prime ring, D a nonzero derivation of R, and L a nonzero left ideal of R. If for integers $k, n + 1 \ge 1$, $[D(x^k), x^k]_n = 0$ for all $x \in L$, then R is commutative.

Proof. It is easy to see that if $L \subseteq R \cap C$, then R must be commutative [14, Corollary, p. 7], so we may choose $a \in L-C$. For any $r \in R$, $[D((ra)^k), (ra)^k]_n = 0$, and it follows that

$$[D((Xa)^k), (Xa)^k]_n = \left[\sum_{i=0}^{k-1} (Xa)^i (X^Da + XD(a))(Xa)^{k-i-1}, (Xa)^k\right]_n$$

is an identity with derivation which is satisfied by R. If D is an outer derivation, a direct application of [17, Theorem 2, p. 65] or [6, Main Theorem, p. 251], together with [5, Theorem 2, p. 725] show that $[\sum_{i=0}^{k-1} (Xa)^i (Ya + XD(a))(Xa)^{k-i-1}, (Xa)^k]_n$ is an identity for Q, which yields easily that $[\sum_{i=0}^{k-1} (Xa)^i (Ya)(Xa)^{k-i-1}, (Xa)^k]_n$ is an identity for Q by first setting Y = 0. Since $a \notin C$, this identity is a nonzero

generalized polynomial identity for R, so by Martindale's theorem [22, Theorem 3, p. 579] $H = \operatorname{soc} RC \neq 0$. Clearly the identity holds on $H \subseteq Q$. If H is commutative, then so is R and we are finished. Otherwise, since $Ha \subseteq H$ [18, Lemma 7, p. 779], there is a minimal left ideal $He \subseteq Ha$ with $e^2 = e \in H$ and Hta = He for some $t \in H$. Consequently, He satisfies $[\sum_{i=0}^{k-1} X^i Y X^{k-i-1}, X^k]_n = 0$. Evaluating this expression with X = he and Y = (1 - e)ye for arbitrary $h, y \in H$, and using he(1 - e)ye = 0 results in $(1 - e)ye(he)^{k(n+1)-1} = 0$. Because He is minimal, if $(1 - e)ye \neq 0$, it follows that He = H(1 - e)ye, so $(he)^{k(n+1)} = 0$ results. This means that He is a nil left ideal of bounded index and Levitzki's theorem [13, Lemma 1.1, p. 1] forces R to contain a nonzero nilpotent ideal. This contradiction shows that R must be commutative when D is outer.

We may now take D(q) = [q, A] with $A \in Q - C$, since $D \neq 0$. As above, if we choose $a \in L - C$, then our assumption yields the identity $[A, (ra)^k]_{n+1} = 0$ for R. This is a nonzero generalized polynomial identity because $A \notin C$, so Martindale's theorem [22, Theorem 3, p. 579] shows that $H = \operatorname{soc} RC \neq 0$ and eHe is finite dimensional over C for $e^2 = e$ a minimal idempotent in H. Now the identity $[A, (Xa)^k]_{n+1}$ is also satisfied by Q [5, Theorem 2, p. 725] and hence by H. As in the case above, R is commutative if H is, so we proceed with the assumption that H is not commutative to get the contradiction D = 0.

We want to replace R with H and be able to assume that for any minimal idempotent $e \in H, Ce = eHe$. We note that C = C(H), CH = H and $D(H) \subseteq H$ [18, Lemma 7, p. 59], and C centralizes H, so it is clear that $Ce \subseteq Z(eHe)$ for any idempotent $e \in H$. Assume first that C is a finite field. From the finite dimensionality of eHe over Ce it follows that eHe is a finite field, so for $z \in eHe$ and any $h \in H$, zehe = ehez, which forces ze = ce for $c \in C(H) = C$ [22, Theorem 1, p. 577]. Therefore Ce = Z(eHe) = eHe when C is a finite field. If C is infinite, then a Vandermonde determinant argument, for example that in [20, Lemma 2, p. 732], shows that $[A, (Xa)^k]_{n+1}$ is satisfied by any extension $H \otimes_C F$ of H, for F a field extension of C. In particular we can take F to be an algebraic closure of C. Now $C(H \otimes_C F) = F$ [10, Theorem 3.5, p. 59], soc $(RC \otimes_C F) = H \otimes_C F$, and for any minimal idempotent $e \in H \otimes_C F$, $e(H \otimes_C F)e$ is finite dimensional over eF, again by [22], so $e(H \otimes_C F)e = eF$ because F is algebraically closed. Consequently, regardless of card C, we may assume that H = R and eC = eHe for any minimal idempotent $e \in H$.

Since *H* satisfies the identity $[A, (Xa)^k]_{n+1}$, as for the case above when *D* was assumed to be outer, for some minimal idempotent $e \in H$ and some $t \in H$, He = Hta satisfies the identity $[A, X^k]_{n+1}$. In particular if X = e we obtain $[A, e]_{n+1} = 0$ and also $[A, e]_{n+2} = 0$. Since one of n+1 or n+2 is odd and $[A, e] = [A, e]_3$, it follows immediately that [A, e] = 0, and we may write A = eAe + (1-e)A(1-e). But $eAe = e(Ae)e \in eHe = Ce$, so A = ce + (1-e)A(1-e). For any $h \in H$ we evaluate $[A, (he)^k]_{n+1} = 0$ using the identities $[y, x]_{n+1} = \sum_{i=0}^{n+1} (-1)^i {n+1 \choose i} x^i y x^{n+1-i}$ and $[x + y, z]_s = [x, z]_s + [y, z]_s$ to obtain

$$\begin{aligned} 0 &= (1-e)A(1-e)(he)^{k(n+1)} + \sum_{i=0}^{n+1} (-1)^i \binom{n+1}{i} (he)^{ki} ec(he)^{k(n+1-i)} \\ &= (1-e)A(1-e)(he)^{k(n+1)} + ec(he)^{k(n+1)} \\ &+ c\sum_{i=1}^{n+1} (-1)^i \binom{n+1}{i} (he)^{ki} e(he)^{k(n+1-i)} \end{aligned}$$

CHARLES LANSKI

$$= (1-e)A(1-e)(he)^{k(n+1)} + ec(he)^{k(n+1)} - c(he)^{k(n+1)}$$

= $(1-e)A(1-e)(he)^{k(n+1)} - (1-e)c(he)^{k(n+1)}$
= $(1-e)(A-c)(1-e)(he)^{k(n+1)}$.

Hence $(A-c)(he)^{k(n+1)} = (A-c)(e+(1-e))(he)^{k(n+1)} = (A-c)(1-e)(he)^{k(n+1)} = 0$ since Ae = ce and (A-c)(1-e) = (1-e)(A-c)(1-e). A result of B. Felzenszwalb [11, Theorem 2, p. 242] shows that in a ring with no nonzero nil left ideal, if $yt^s = 0$ for all $t \in L$, a nonzero left ideal, then yL = 0. Therefore, we have (A-c)He = 0, forcing $A = c \in C$ and D = 0, a contradiction. Consequently, R must be commutative, completing the proof of the theorem.

The special case of Theorem 1 when n = 0 gives [12, Theorem 2, p. 19], since $kD(x)x^{k-1} = D(x^k) = 0$ forces char R = p|k. Also, the theorem is a version of [8, Corollary 1, p. 36] for left ideals where we must assume that the exponents k are fixed but need not assume that R has no nil ideal. Before proving our Main Theorem, it will be helpful to collect a few observations together into a lemma.

Lemma. Let R be a semiprime ring and M the maximal central ideal of R.

- (1) $M = \operatorname{ann}([R, R])$ is a semiprime ideal of R;
- (2) if $a \in R$ and Ra is central, then $a \in M$; and
- (3) if D is a derivation of R, then $D(M) \subseteq M$.

Proof. Since any annihilator ideal in a semiprime ring is a semiprime ideal, it suffices to show that $M = \operatorname{ann}([R, R])$ to prove (1). Let $A = \operatorname{ann}([R, R])$ and note that 0 = [MR, R] = M[R, R], so $M \subseteq A$. But $[A, R] \subseteq A \cap ([R, R]) = 0$ since R is semiprime, and A = M. Next observe that R/M has no nonzero central ideal. If $M \subseteq I$ is an ideal of R with I/M central in R/M, then $[I, R] \subseteq M$ implies that [[I, R], R] = 0, so [I, [R, R]] = 0 and I is central by [14, Lemma 1.1.8, p. 8] forcing I = M. Consequently, if Ra + M is central in R/M, then $Ra \subseteq M$, which results in $a \in M$ by (1). Finally, for any derivation D it is easy to see that $D(Z(R)) \subseteq Z(R)$, the center of R, and then that M + D(M) is an ideal of R in Z(R). Thus $D(M) \subseteq M$ by the maximality of M.

Proof of Main Theorem. Our assumption that $[[\dots [[D(x^{t_0}), x^{t_1}], x^{t_2}], \dots], x^{t_n}] = 0$ for all $x \in L$ implies that $[D(x^k), x^k]_n = 0$ for $k = t_0t_1 \cdots t_n$ since powers of xcommute, so we may as well assume that all $t_j = k$. We claim that RD(R)L is a central ideal of R, and is not zero unless D(L) = 0. Should D(R)L = 0, then $L \subseteq \operatorname{ann}(D(R))$, the left or right annihilator of (D(R)), the ideal D(R) generates. It is easy to see that $D(L) \subseteq D(\operatorname{ann}(D(R))) \subseteq D(R) \cap \operatorname{ann}(D(R)) = 0$, since Ris semiprime. Consequently, to prove the existence of a nonzero central ideal, it suffices to assume that $D(L) \neq 0$ and show that RD(R)L is central. Equivalently, we need to prove that for each prime ideal P of R, the image of RD(R)L is central in R/P. This is clear if $D(R)L \subseteq P$, so we need only consider those prime ideals with $D(R)L \not \leq P$.

Let P be a prime ideal of R so that $D(R)L \not\subset P$, and suppose that $D(P) \subseteq P$. In this case, D induces a derivation E on R/P via E(r+P) = E(r) + P and our hypothesis carries over from R to R/P using E and the left ideal $L + P \subseteq R/P$. Applying Theorem 1 gives either E = 0, $L + P \subseteq P$, or R/P commutative. Since the first two possibilities each force $D(R)L \subseteq P$, we must conclude that R/P is commutative, so RD(R)L + P is central in R/P.

342

We may assume now that $D(R)L \not\subset P$ and $D(P) \not\subset P$. It is straightforward to check that $D(P) + P = B \subseteq R/P$ is a nonzero ideal. For any $t \in P$ and $y \in L$ our assumption that $[D((ty + y)^k), (ty + y)^k]_n = 0$, taken modulo P becomes $[\sum_{i=0}^{k-1} y^i(D(t)y + D(y))y^{k-i-1}, y^k]_n = 0$ in R/P. But

$$\left[\sum_{i=0}^{k-1} y^i D(y) y^{k-i-1}, y^k\right]_n = [D(y^k), y^k]_n = 0,$$

so $[\sum_{i=0}^{k-1} y^i D(t) y^{k-i}, y^k]_n = 0$ in R/P, which means that the expression $f(X, Y) = [\sum_{i=0}^{k-1} Y^i X Y^{k-i}, Y^k]_n$ yields $O_{R/P}$ when elements of B replace X and elements of L + P replace Y. If for some $y \in (L + P) - P, yw = 0$ in R/P for $w \in R/P - O_{R/P}$, then for any $b \in B$ and $r \in R$, $O_{R/P} = f(wb, ry) = wb(ry)^{k(n+1)}$. Thus $wB(ry)^{k(n+1)} = 0$ in R/P, and since B is a nonzero ideal and R/P is prime, we must conclude that Ry + P is a nil left ideal of bounded index in R/P, forcing the contradiction $y \in P$ by Levitzki's theorem [13, Lemma 1.1, p. 1]. Therefore, we may assume that each nonzero $y \in L + P$ has no right annihilator in R/P.

To simplify notation, we assume that R is a prime ring with a nonzero ideal Band nonzero left ideal L whose nonzero elements are left regular, that f(X, y) is an identity for B for each $y \in L$, and show that R is commutative. Expanding f(X,y) for $y \in L-0$, yields the identity $\sum_{j=0}^{v} n_j y^j X y^{v-j}$ for B, where n_j are integers, $n_0 = 1$, and v = k(n + 1). This is a generalized linear identity for B, so by [18, Lemma 1, p. 766], $\{1, y, \ldots, y^v\}$ must be C(R) dependent. Let $m(y) = y^s + \cdots + c_1 y + c_0 = 0$ with $c_i \in C(R)$ and s minimal. The definition of Q allows us to choose a nonzero ideal I of R so that all $c_i I \subseteq R$. Thus if $c_0 = 0$ and m(y) = yg(y), then $g(y)I \subseteq R$, so g(y)I is in the right annihilator of y, and g(y)I = 0 forces g(y) = 0, contradicting the minimality of s. Therefore $c_0 \neq 0$ and $J = c_0 I = I c_0 \subseteq Ry$. Now f(X, Y) is a polynomial identity for $B \cap J \subseteq L$, and so for its central localization, a finite dimensional central simple algebra [16, Theorem 2, p. 57]. Applying [20, Lemma 2, p. 732] shows that $B \cap J$ is commutative or that f(X,Y) is an identity for some $M_d(F)$ for F a field and d > 1. But $f(e_{12}, e_{22}) = e_{12} \neq 0$, for e_{12} and e_{22} matrix units in $M_d(F)$, so $B \cap J$ is commutative, forcing R to be commutative [14, Corollary, p. 7], and showing that our original semiprime ring must contain the nonzero central ideal RD(R)L.

Finally, we must show that D(L), $D(R)L \subseteq M$, the maximal central ideal of our semiprime ring R. We have just proven that $RD(R)L \subseteq M$, so by the Lemma $D(R)L \subseteq M$ and $D(R)D(L) \subseteq D(D(R)L) + D^2(R)L \subseteq D(M) + M = M$. Hence

$$D(L)RD(L) \subseteq D(LR)D(L) + M \subseteq M,$$

and the semiprimeness of M by the Lemma forces $D(L) \subseteq M$. Therefore, the proof of the Main Theorem is complete.

It is clear that the Main Theorem generalizes both [9] and [20], and in the way we mentioned after Theorem 1, [8] as well. We end the paper with another consequence of the Main Theorem by giving an extension to one-sided ideals of [2, Theorem 3, p. 385] and [7, Theorem 2, p. 120].

Theorem 2. Let R be a semiprime ring and L a nonzero left ideal of R. If for integers $n, k \ge 1$, and some $a \in R, [a, x^k]_n = 0$ for all $x \in L$, then [a, L] = 0. When R is a prime ring, then $a \in Z(R)$, the center of R.

Proof. Define a derivation D of R by D(r) = [r, a]. Then for all $x \in L$,

$$-[D(x^k), x^k]_{n-1} = [-D(x^k), x^k]_{n-1} = [a, x^k]_n = 0.$$

By the Main Theorem, either D = 0 or $D(L) \subseteq Z(R)$. When D = 0, $a \in Z(R)$ is immediate, and when $D(L) \subseteq Z(R)$, [[a, L], R] = 0. In particular, if $y \in L$ and $r \in R$, then

$$0 = [[a, ay], r] = [a[a, y], r] = [a, r][a, y],$$

so letting r = ys for $s \in R$ shows that [a, y]R[a, y] = 0. Since R is semiprime we are forced to conclude that [a, L] = 0. When R is prime, 0 = [a, RL] = [a, R]L, so $a \in Z(R)$, proving the theorem.

References

- H. E. Bell and W. S. Martindale, III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), 92–101. MR 88h:16044
- H. E. Bell and I. Nada, On some center-like subsets of rings, Arch. Math. 48 (1987), 381–387. MR 88h:16045
- M. Brešar, Centralizing mappings and derivations in prime rings, J. Algebra 156 (1993), 385–394. MR 94f:16042
- M. Brešar, One-sided ideals and derivations of prime rings, Proc. Amer. Math. Soc. 122 (1994), 979–983. MR 95b:16037
- C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc. 103 (1988), 723–728. MR 89e:16028
- C. L. Chuang, *-differential identities of prime rings with involution, Trans. Amer. Math. Soc. 316 (1989), 251–279. MR 90b:16018
- C. L. Chuang and J. S. Lin, On a conjecture by Herstein, J. Algebra 126 (1989), 119–138. MR 90i:16028
- 8. C. L. Chuang, Hypercentral derivations, J. Algebra 66 (1994), 34-71. MR 95e:16029
- Q. Deng and H. E. Bell, On derivations and commutativity in semiprime rings, Comm. Algebra 23 (1995), 3705–3713. CMP 95:17
- T. S. Erickson, W. S. Martindale, III, and J. M. Osborn, *Prime nonassociative algebras*, Pacific J. Math. **60** (1975), 49–63. MR **52**:3264
- 11. B. Felzenszwalb, On a result of Levitzki, Canad. Math. Bull. 21 (1978), 241–242. MR 58:10992
- B. Felzenszwalb, *Derivations in prime rings*, Proc. Amer. Math. Soc. 84 (1982), 16–20. MR 83b:16030
- 13. I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, 1969. MR 42:6018
- 14. I. N. Herstein, Rings with involution, University of Chicago Press, Chicago, 1976. MR 56:406
- N. Jacobson, *Lie algebras*, Wiley, New York, 1962; reprint, Dover, New York, 1979. MR 26:1345; MR 80k:17001
- N. Jacobson, *PI-algebras*, Lecture Notes in Math., Vol. 441, Springer-Verlag, New York, 1975. MR 51:5654
- V. K. Kharchenko, Differential identities of semiprime rings, Algebra and Logic 18 (1979), 58–80. MR 81f:16052 (of Russian original)
- C. Lanski, Differential identities in prime rings with involution, Trans. Amer. Math. Soc. 291 (1985), 765–787. MR 87f:16013
- C. Lanski, Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math. 134 (1988), 275–297. MR 89j:16051
- C. Lanski, An Engel condition with derivation, Proc. Amer. Math. Soc. 118 (1993), 731–734. MR 93i:16050
- C. Lanski, Derivations with nilpotent values on left ideals, Comm. Algebra 22 (1994), 1305– 1320. MR 95h:16048
- W. S. Martindale, III, Prime rings satisfying a generalized polynomial identity, J. Algebra 12 (1969), 576–584. MR 39:257
- E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), 1093–1100. MR 20:2361

- B. Tilly, Derivations whose iterates are zero or invertible on a left ideal, Canad. Math. Bull. 37 (1994), 124–132. MR 94m:16041
- J. Vukman, Commuting and centralizing mappings in prime rings, Proc. Amer. Math. Soc. 109 (1990), 47–52. MR 90h:16010

Department of Mathematics, University of Southern California, Los Angeles, California 90089-1113

 $E\text{-}mail \ address: \texttt{clanski@math.usc.edu}$