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THE GENERALIZED GOURSAT-DARBOUX PROBLEM

FOR A THIRD ORDER OPERATOR

JAIME CARVALHO E SILVA AND CARLOS LEAL

(Communicated by Jeffrey B. Rauch)

Abstract. It is proved that if a generalized Goursat-Darboux problem is C∞-
well posed then the operator cannot contain derivatives with respect to one of
the variables.

1. Introduction

In this paper we study the generalized Goursat-Darboux problem

∂t∂x∂yu(t, x, y, z) = (A1∂
2
t ∂z +B1∂

2
x∂z + C1∂

2
y∂z

+A2∂
2
t +B2∂

2
x + C2∂

2y)u(t, x, y, z),

u(0, x, y, z) = g1(x, y, z),

u(t, 0, y, z) = g2(t, y, z),

u(t, x, 0, z) = g3(t, x, z).

(P)

The Ai, Bi, Ci are real numbers and the gi, i = 1, 2, 3, are given C∞ functions
satisfying the obvious compatibility conditions. We are looking for C∞ solutions
in a neighborhood of the origin of R4.

The study of this problem faces the usual difficulties of a Goursat problem,
but the way the initial conditions are given (with tight compatibility conditions)
introduces supplementary difficulties. The Goursat-Darboux problems show up
when trying to solve systems of differential equations by the methods of [7] and [8].

Simpler cases of this Goursat-Darboux problem have been studied in [1].

2. Using the Lax-Mizohata theorem

A Lax-Mizohata type theorem is true for the generalized Goursat-Darboux prob-
lem [2], and so we can conclude that if the problem (P) is locally C∞-well posed,
the polynomial

TXY −A1T
2Z −B1X

2Z − C1Y
2Z

can have only real roots in T,X and Y for any values of the other variables.
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It is easy to see that this implies that we must have A1C1 ≤ 0 , A1B1 ≤ 0
and B1C1 ≤ 0. This implies that one of A1, B1, C1 must be zero. However, for the
moment, we cannot say which one.

3. Using the continuity

If the problem is C∞-well posed, then it is well known [6] that the map

g1, g2, g3 7→ u

is continuous for the usual topology of C∞. That implies the inequality

|u(t, x, y, z)| ≤ c
[

sup
K

|α|≤N

|∂αg1|+ sup
K′

|α|≤N ′

|∂αg2|+ sup
K′′

|α|≤N ′′

|∂αg3|
]

(1)

for (t, x, y, z) in a neighborhood of the origin, where K,K ′ and K ′′ are compact sets
and N,N ′ and N ′′ are nonnegative integers. Let’s make the separation of variables

u(t, x, y, z) = v(t, x, y)eiηz ,

where η is a positive real number to be chosen later. Let’s choose the initial condi-
tions

g1(x, y, z) = eiηz
(

1

4
x2y2 +

1

4!
y4 +

1

4!
x4

)
,

g2(t, y, z) = eiηz
(

1

4
t2y2 +

1

4!
t4 +

1

4!
y4

)
,

g3(t, x, z) = eiηz
(

1

4
t2x2 +

1

4!
t4 +

1

4!
x4

)
.

Let’s look for a solution u of (P) such that v has the form

v(t, x, y) =
∑

p,q,r≥0

vpqr
tpxqyr

p!q!r!
.

The initial conditions imply that

voqr, vpor, vpqo(2)

are all zero, except

v220, v202, v022, v400, v040, v004.(3)

Let’s write A = A1(iη) + A2, B = B1(iη) + B2, C = C1(iη) + C2. Then v must
satisfy the differential equation

∂t∂x∂yv = (A∂2
t +B∂2

x + C∂2
y)v.

This implies that the coefficients vpqr satisfy the recurrence relation

vpqr = Avp+1,q−1,r−1 +Bvp−1,q+1,r−1 + Cvp−1,q−1,r+1.(4)

To see that this recurrence relation and the conditions (2)–(3) define completely all
the vpqr , we define index (vpqr) = p+ q+ r. We see that on the left of (4) the index
is one unit more than for each term on the right side. Thus, we can conclude that
all coefficients with index 0, 1, 2, 3 and 5 are equal to zero. Those with index 4 that
are nonzero are the ones in (3). With index 6 only v222 is nonzero. And although
some terms with index 7 and 8 are nonzero, only the coefficient v333 is nonzero for
all vpqr with index 9. So we can write all the vpqr with index greater than 9 as a
function of v333.
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The following two lemmas are easily proved and tell which of these coefficients
are different from zero.

Lemma 1. Let N be the index of vpqr and N ≥ 9.

a) If N is even, only the vpqr with

p+ q + r = N, p, q, r ≤ N − 6, p, q, r all even,

can be different from zero.
b) If N is odd, only the vppr with

p+ q + r = N, p, q, r all odd, p, q, r ≤ N − 6,

can be different from zero.

Lemma 2. Let N be the index of vpqr, N ≥ 9, and p, q, r ≤ N−6. The coefficients
vpqr that are different from zero have the form

vpqr =
(p+ q + r − 9)!

α!β!γ!
AαBβCγv333

with

α =
q + r − 6

2
, β =

p+ r − 6

2
, γ =

p+ q − 6

2
.

Now we can write an explicit formula for v(t, x, y). Modulo polynomials of degree
not greater than eight,

v(t, x, y) =
∑

a,b,c≥1

v2a,2b,2c
t2ax2by2c

(2a)!(2b)!(2c)!

+
∑

a,b,c≥0

v2a+1,2b+1,2c+1
t2a+1x2b+1y2c+1

(2a+ 1)!(2b+ 1)!(2c+ 1)!

But in this formula there are still coefficients that are zero (and to which we
cannot apply the formula of lemma 2). So we must exclude more coefficients and
in the end we can write v(t, x, y) as a linear combination of several hypergeometric
functions of two or three of the following variables: ACx2, CAx2, ABy2, BAy2,
BCt2, CBt2. The important fact is that all the coefficients of the linear combination
are different, and so we can control the growth of v(t, x, y) because we can choose
t, x or y small enough in a neighborhood of the origin.

To the hypergeometric functions obtained we can apply a slight modification of
theorem 2 of [3], to conclude that if all but one variable go to zero when η grows, and
the other goes to infinity in absolute value (but is not a negative real number nor
is close to a negative real number), then each function is asymptotically equivalent
to a hypergeometric function of one variable of the type pFp+1. In the cases where
this function has exponential growth, v(t, x, y) will have exponential growth also,
because all the coefficients of the linear combination are different.

Let’s do the calculations for one of the hypergeometric functions; for the others
the calculations are identical. If |ACx2| →

η→+∞
0 and |ABy2| →

η→+∞
+∞ then the

hypergeometric function∑
b,c≥0

(2b+ 2c+ 1)!

(b+ c+ 1)!(2b+ 4)!(2c+ 4)!

(ACx2)b(ABy2)c

b!c!
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is asymptotically equivalent to

1

2 · 4!
At2x4y4

∑
c≥0

(2c+ 1)!

(c+ 1)!(2c+ 4)!

(ABy2)c

c!

=
1

2 · 4!
At2x4y4

∑
c≥0

1

(c+ 1)!(2c+ 4)(2c+ 3)(2c+ 2)

(ABy2)c

c!

=
1

16 · 4!
At2x4y4

∑
c≥0

1

(c+ 1)!(c+ 2)(c+ 3
2 )(c+ 1)

(ABy2)c

c!
.

But

c+
3

2
=

Γ(c+ 5
2 )

Γ(c+ 3
2 )

=
(5

2 )cΓ(5
2 )

(3
2 )cΓ(3

2 )

where (a)c = a(a + 1)(a + 2) · · · (a + c − 1) is the Pochhammer notation. So the
function above is

Γ(3
2 )

Γ(5
2 )

1

32 · 4!
At2x4y4

∑
c≥0

(3
2 )c(1)c

(3)c(
5
2 )c(2)c

(ABy2)c

c!

=
Γ(3

2 )

Γ(5
2 )

1

32 · 4!
At2x4y4

2F3

(
3
2 1

3 5
2 2

∣∣∣∣∣ABy2

)
.

By Meijer’s theorem [5] this hypergeometric function is asymptotically equivalent
to

1

32 · 4!
√
π
At2x4y2(ABy2)−9/4e2

√
ABy2

.

But

AB = −A1B1η
2 + i(A1B2 +B1A2)η +A2B2.(5)

So, if −A1B1 is positive, this function will have an exponential growth, and this
contradicts the inequality (1). Exchanging the roles of t, x and y we would obtain
similarly

A1B1 ≥ 0,

A1C1 ≥ 0,

B1C1 ≥ 0.

4. Conclusion

The conclusions of sections 2 and 3 imply that A1B1 = B1C1 = A1C1 = 0, and
so at least two of A1, B1, C1 must be zero. Let’s assume B1 = C1 = 0. Then (5)
becomes AB = iA1B2η +A2B2

But in this case

e2
√
ABy2

will also have an exponential growth, and in the same way as before we can conclude
that A1B2 = 0. Similarly, we would conclude A1C2 = 0. So, if A1 6= 0, then
B2 = C2 = 0.
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Let’s now study the case when B = C = 0 and A 6= 0. The equation is reduced
to

∂t∂x∂yu(t, x, y, z) = (A1∂z +A2)∂2
t u(t, x, y, z).

Let’s separate variables again:

u(t, x, y, z) = w(x, y, z)(1− et),
and choose

S1(x, y, z) = 0,

S2(t, y, z) = (1− et)G2(y, z),

S3(t, x, z) = (1− et)G3(x, z).

Then we obtain

∂x∂yw(x, y, z) = (A1∂z +A2)w(x, y, z),

w(0, y, z) = G2(y, z),

w(x, 0, z) = G3(x, z).

and we are in the case of Hasegawa [4] and so can conclude that A1 = 0. We then
obtain

Theorem. If problem (P) is C∞-well posed then A1 = B1 = C1 = 0, i.e., none of
the derivatives with respect to z can appear in the equation.

This result is in accordance with what was obtained for other cases of the gen-
eralized Goursat-Darboux problem ([1] and [4]).
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