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WITH ALMOST COMMUTING ALGEBRAS
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(Communicated by Palle E. T. Jorgensen)

Abstract. A trace formula related to p-almost commuting subalgebras X and
Y is established. By means of this formula, homomorphisms from K0(X) to
Hodd
λ (Y ) and from K1(X) to Heven

λ (Y ) are established. An index map from
K0(X)×K1(Y ) to Z is also given.

1. Introduction

Let A be an algebra over C with trace ideal J and trace τ . Assume X and Y
are two subalgebras of A satisfying the condition that there is a natural number p
such that

[x1, y1] · · · [xp, yp] ∈ J
for xj ∈ X and yj ∈ Y , where [x, y] is the commutator xy − yx. Then we say that
X and Y are p-almost commuting. The present note is a continuation of [6], [7],
[8], [9] to study the Chern characters associated with this pair of X and Y in the
context of A. Connes’ theory of noncommutative geometry. First in §2, we establish
a trace formula (8) of

ξn(x0, . . . , xn; y0, . . . , yn−1)
def
= τx0[x1, y0] · · · [xn, yn], n ≥ p,

which gives the relation of the cyclic cochains AxAyξk and AxAyξk+2m in terms of
cyclic cohomology (see Theorem 1). As a corollary, it reduces to the trace formula
of

ϕn(x0, . . . , xn; y0, . . . , yn) = τ [x0, y0] · · · [xn, yn], n ≥ p− 1,

in [7] and [8].
Based on Theorem 1 and A. Connes’ theory, in Theorem 2 and Theorem 3 we

establish homomorphisms from K0(X) to Hodd
λ (Y ) and K1(X) to Heven

λ (Y ) by
means of Chern characters. But for convenience, in the statement of Theorem 3,
we switch the roles of X and Y . In Theorem 4, we give the index map from
K0(X)×K1(Y ) to Z in the case when A is an algebra of operators on a separable
complex Hilbert space. We also give a simple example to show that the index map
is not trivial.
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In §4, we generalize Theorem 1 to the q-deformed (or q-twisted) commutator
case (see Theorem 1′). Besides, we give a theorem (Theorem 5) of Chern character
of odd dimension which is just a remark of the previous work in [9].

2. Basic formulas

Let X be an algebra over C. Let Cn = Cn(X) be the space of multilinear
functions fn(x0, . . . , xn), xj ∈ X , let t : Cn → Cn be the operation(

tfn
)
(x0, . . . , xn) = (−1)nfn(xn, x0, . . . , xn−1),

let Cnλ = {f ∈ Cn : tf = f}, and let Af = (1 + t+ · · ·+ tn)f , f ∈ Cn. Let b be the
Hochshild operation Cn → Cn+1,(

bf
)
(x0, . . . , xn+1) =

(
b′f
)
(x0, . . . , xn+1) + (−1)n+1f(xn+1x0, . . . , xn),

where
(
b′f
)
(x0, . . . , xn+1) =

∑n
j=0(−1)jfn(x0, . . . , xjxj+1, . . . , xn). Let p be the

operation pf =
∑n
j=0(n − j)tjf , f ∈ Cn, where t0 = 1. Define S = 2πibpb′. Then

this operator S coincides with A. Connes’ operator [1] S at Znλ = {f ∈ Cnλ : bf = 0}.
Let q be the operation [8] qf = nAf/2− ptf , f ∈ Cn. Let r be the operation [8]
rf = rn(t)f , f ∈ Cn, for n > 0, where rn(·) is a polynomial of degree ≤ n − 1

satisfying qf = (1 − t)rf , f ∈ Cn. For convenience, define Ŝ = bpb′ (which is the
operator S in [8] and [9]).

The following well-known identities will be needed. Notice that (1−t)b = b′(1−t)
(cf. [4], [1]) and that p(1− t)f = (n+ 1−A)f , for f ∈ Cn (cf. [8]). Hence

Ŝ(1− t) = −bAb(1)

and

(1− t)Ŝ = −b′bA.(2)

If f ∈ Cnλ , then Sbf ∈ Cn+3
λ and (cf. [8])

Ŝbf =
1

n+ 1
bAŜf, f ∈ Cnλ .(3)

In the present note, the tensor product spaces Cn(X) ⊗ Cn(Y ) and Cnλ (X) ⊗
Cnλ (Y ) of functions of several variables xi ∈ X and yj ∈ Y are considered. The
operations tx, bx, b′x, px, . . . or ty, by, b

′
y, py, . . . are the corresponding operations

t, b, b′, p, . . . with respect to variables x’s and y’s respectively.
In §2 and §3, assume that X and Y are two p-almost commuting subalgebras of

an algebra A over C with trace ideal J and trace τ . Define for n ≥ p

ψn(x0, . . . , xn; y0, . . . , yn) = τx0y0[x1, y1] · · · [xn, yn],

φn−1(x0, . . . , xn−1; y0, . . . , yn−1) = τ [x0, y0] · · · [xn−1, yn−1],

ξn(x0, . . . , xn; y0, . . . , yn−1) = τx0[x1, y0] · · · [xn, yn−1],

ηn(x0, . . . , xn−1; y0, . . . , yn) = τy0[x0, y1] · · · [xn−1, yn].

The following is a special case of Lemma 1 in [9] (or [7], [8]).
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Lemma 1. For n ≥ p,

ξn+1 = bxψn, ηn+1 = −txbyψn,(4)

(1− tx)ξn = b′xφn−1, (1− ty)ηn = b′yφn−1,(5)

(1− t−1
y )ξn = bxφn−1, (1− t−1

x )ηn = byφn−1,(6)

(1− ty)ψn = b′yξn − tyφn, (1− tx)ψn = b′xηn + φn.(7)

Theorem 1. Let k ≥ p be an even number, m be a natural number, and n = k+2m.
Then there are θj ∈ Cjλ(X) ⊗ Cjλ(Y ), j = n − 1, n − 2 (θj also depending on k),
such that

AxAyξn = bxθn−1 +AxSxbyθn−2 + ξ̃n,(8)

where

ξ̃n =
1

(2π)2m

k!(k − 1)!

n!(n− 1)!
(AxSx)m(AySy)mAxAyξk.(9)

Proof. Based on Lemma 1, in [8] (cf. (20) of [8]) it is proved that

AxAyψj = (j + 1)2ψj − (j + 1)pyb
′
yξj − pxb′xAyηj − (j + 1)qyφj ,(10)

for j ≥ p. From (4), (10) and the fact that bxξj = 0, we have

ξj+1 =
1

(j + 1)2
(bxAxAyψj + ŜxAyηj) +

1

j + 1
bxqyφj ,(11)

for j ≥ p. Thus

AxAyξj+1 =
j + 2

j + 1
bxAxAyψj +

1

j + 1
AxŜxAyηj ,(12)

for j ≥ p, since Ayqy = 0.
Similarly, we have

ηj+1 = − 1

(j + 1)2
(AxbyAyψj +AxŜyξj)−

1

j + 1
txbyqyφj ,(13)

for j ≥ p. It is easy to see that rxφj = ryφj , since txtyφj = φj . Denote rxφj by
rφj (cf. [8]). From (1), we have

Ŝxtxqyφj = Ŝxtx(1− ty)ryφj = −Ŝx(1− tx)ryφj

= bxAxbxrφj ,
(14)

for j ≥ p− 1. From (6), it is easy to see that tlyξj = ξj +
l∑

v=1
tvybxφj−1. Thus

Ayξj = jξj + bxpytyφj−1, j ≥ p.(15)

Similar to (14), we have Ŝyqyφj = −byAybyrφj . From (7), Ayφj = byAyξj . Hence
bxAyφj = 0. Thus

bxŜytypyφj = bxŜy(jAyφj/2− qyφj) = bxbyAybyrφj .(16)
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From (12), (13), (14), (15) and (16), we have, for j ≥ p,

AxAyξj+2 =
j + 3

j + 2
bxAxAy(ψj+1 −

1

j + 1
bxbyrφj)

− 1

(j + 1)2
AxŜxAxbyAy(ψj −

1

j
bxbyrφj−1)

− 1

(j + 2)(j + 1)2j
AxŜxAxAyŜyAyξj .

(17)

As in [8], define Θk−1 = Θk−2 = 0,

ζj = ψj −
1

j
bxbyrφj−1 −

1

j(j − 1)2
ŜxŜyΘj−2

and Θj = 1
j+1AxAyζj for j ≥ k by mathematical induction. Define

ξ̂j = AxAyξj − (j + 1)bxΘj−1 +
1

j − 1
AxŜxbyΘj−2.

From (3) and (17), we have

ξ̂j+2 = −AxŜxAyŜy ξ̂j/(j + 2)(j + 1)2j, j ≥ k,

which proves (8) and (9) where θn−1 = (n+1)Θn−1 and θn−2 = −Θn−2/(n− 1)2πi.

Since Axφn = Ayφn, denote it by Aφn. Applying by to (8), we get the following.

Corollary 1 [8]. Let k ≥ p be an even number, m be a natural number and n =
k + 2m. Then there is Θn−1 ∈ Cn−1

λ (X)⊗ Cn−1
λ (Y ) such that

Aφn = bxbyΘn−1 + φ̃n,

where φ̃n = k!Smx S
m
y Aφn/(2π)2mn!.

3. Chern characters

Let ` ≥ 1. For (xij) ∈ M`(X), let [(xij), y] = ([xij , y]), y ∈ Y , where M`(X) is
the algebra of `× ` matrices over X . Define(

tr ]ξn
)
(x0, . . . , xn; y0, . . . , yn−1) =

(
tr ]τ

)
(x0[x1, y0] · · · [xn, yn−1]),(18)

for xj ∈M`(X), n ≥ p. For odd n ≥ p− 1 and e ∈ Proj(M`(X)), let

che,n(y0, . . . , yn) =
n!(
n+1

2

)
!
(−2πi)

n+1
2 Ay

(
tr ]ξn+1

)
(e, . . . , e; y0, . . . , yn).

For f ∈ Znλ , let [f ] = f + bCn−1
λ ∈ Hn

λ = Znλ/bC
n−1
λ . Let Hodd

λ (Y ) be the group
defined in [1].

Theorem 2. The mapping [e] 7→ [che,2m−1] is a homomorphism from K0(X) to

H2m−1
λ (Y ), 2m ≥ p. It satisfies

[S che,2m−1] = [che,2m+1],(19)

and it defines a homomorphism from K0(X) to Hodd
λ (Y ).
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Proof. We only have to consider the case e ∈ Proj(X). It is easy to see (cf. [1])
that for even n,(

bf
)
(e, . . . , e) = f(e, . . . , e) = 0, f ∈ Cn−1

λ ,(20)

and (
AŜf

)
(e, . . . , e) = (n+ 3)(n+ 2)f(e, . . . , e)/2, f ∈ Cn.(21)

By (7), byAyξn(e, . . . , e; y) = Ayφn(e, . . . , e; y) = Ayτ [e, y0] · · · [e, yn] = 0 for
odd n ≥ p − 1. Thus che,n ∈ Znλ (Y ). On the other hand, Axξn(e, . . . , e; y) =
(n+ 1)ξn(e, . . . , e; y) for even n. From (8), (9), (20) and (21), we have

Ayξn(e, . . . , e; y0, . . . , yn−1) = by
(
AxŜxθn−2

)
(e, . . . , e; y0, . . . , yn−1)

+ (−1)m
(k − 1)!

(n− 1)!2m
[
(AyŜy)mAyξk

]
(e, . . . , e; y0, . . . , yn−1),

for n = 2m + k and k ≥ p, which proves (18). The rest of the proof is similar to
the proof of Proposition 14 of Chapter II of [1].

Remark. By (12) and (21), for odd n ≥ p− 1, we also have

che,n(y0, . . . , yn) =
n!(n+ 2)(
n+1

2

)
!2

(−2πi)
n+1

2

(
Ay tr ]ηn

)
(e, . . . , e; y0, . . . , yn).

For (yij) ∈ M`(Y ), let [x, (yij)] = ([x, yij ]), x ∈ X . Define tr ]ξn by (18) for
yj ∈M`(Y ) and n ≥ p. For u ∈ GL`(Y ) and even n ≥ p, define

chu,n(x0, . . . , xn) = kn
(
AxAy tr ]ξn

)
(x0, . . . , xn;u−1, u, . . . , u−1, u),(22)

where kn = (−2πi)n/2n!/(n+ 1)(n2 )!2
n
2 .

Theorem 3. The mapping [u] 7→ [chu,2m] is a homomorphism from K1(Y ) to
H2m
λ (X), for 2m ≥ p. It satisfies

[S chu,2m] = [chu,2(m+1)](23)

and it defines a homomorphism from K1(Y ) to Heven
λ (X).

Proof. We only have to consider the case that u ∈ Y and u−1 ∈ Y . It is easy to
see that (

Aφ2m−1

)
(x0, . . . , x2m−1;u−1, u, . . . , u−1, u) = 0.(24)

For f ∈ Cn, n = 2m,

bAf = Abf − bf +
n∑
j=1

(−1)j−1
(
f − tjf

)
(ajaj+1, . . . , an+1, a0, . . . ).(25)

By (4) and (7) we have

(1− tx)ξn = (1− tx)bxψn−1 = b′x(1− tx)ψn−1 = b′xφn−1, n ≥ p+ 1.

From (24), it follows that (1 − tx)Ayξ2m(x0, . . . , xn;u−1, u, . . . , u−1, u) = 0. By
bxξn = 0 and (25), we have(

bxAxAyξ2m
)
(x0, . . . , x2m+1;u−1, u, . . . , u−1, u) = 0.
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Thus chu,2m ∈ Z2m
λ . Formula (23) comes from Theorem 1. Let us follow the lines

of the proof of Proposition 15 of Chapter II of [1]. It is easy to see that

ξn(x0, . . . , xn; y0, . . . , yn−1) = 0

if one of the y’s is 1. Thus in (22), u−1 and u may be replaced by u−1−1 and u−1
respectively.

For f ∈ C2m−1
λ , it is easy to calculate that(
AŜf

)
(u−1, u, . . . , u−1, u) = 4(m+ 1)mf(u−1, u, . . . , u−1, u).

Similar to the proof of Proposition 15 of Chapter II of [1], we may prove that
chuv,2m− chu,2m− chv,2m is the boundary of a cyclic cochain in C2m−1

λ (X) since

byAyξn = Aφn = −bxAxηn
by (7), which proves the theorem.

Remark. Similar to (15), by (6), we have Axηm = mηm + txpxbyφm−1. Suppose n
is even and ≥ p+ 1. By (24), we have

(
Axηn−1

)
(x0, . . . , xn−2;u−1 − 1, u− 1, . . . , u−1 − 1, u− 1)

= (n− 1)ηn−1(x0, . . . , xn−2;u−1 − 1, u− 1, . . . , u−1 − 1, u− 1).

By (12), we may prove that(
AxAyξn −

(n+ 1)

n(n− 1)
ŜxAxAyηn−1

)
(· ;u−1 − 1, . . . , u− 1) ∈ bCn−1

λ (X).

Thus for even n ≥ p− 1, we may define

chu,n(x0, . . . , xn)

= k̂n
(
AxAy tr ]ηn+1

)
(x0, . . . , xn;u−1 − 1, u− 1, . . . , u−1 − 1, u− 1),

where k̂n = −(−2πi)n/2n!/
(
n+2

2

)
!2
n+2

2 .

Now let us consider the case that X and Y are p-almost commuting subalgebras
of the operator algebra on a complex separable Hilbert space H and τ is the usual
trace. In this case, the elements of M`(X) or M`(Y ) may be regarded as operators
on H⊗ C`.
Theorem 4. The index map

〈[e], [u]〉 =
1

m
(−1)m

(
Ay tr ]ξ2m

)
(e, . . . , e;u−1, u, . . . , u−1, u)

= index eu
∣∣
range(e)

,

where e ∈ ProjM`(X) and u ∈ GL`(Y ), is a homomorphism from K0(X)×K1(Y )
to Z.

Proof. It is easy to calculate that

〈[e], [u]〉 = trace
(
(I − ca)m − (I − ac)m

)
,

where a = eu
∣∣
range(e)

and c = eu−1
∣∣
range(e)

. The rest of the proof is similar to the

corresponding part of Chapter I of [1].

Example. Suppose e is the orthogonal projection from L2(T) to H2(T), and u is
the backward bilateral shift

(
uf
)
(z) = zf(z). Then 〈[e], [u]〉 = 1.
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4. Deformed commutator case

Let A be an algebra over C with trace ideal J and trace τ . Let X and Y be
subgroups of A. Assume that there is a function q : X × Y → C satisfying

q(x1x2; y1y2) =
2∏

i,j=1

q(xi, yj) and q(x, 1) = q(1, y) = 1

for xi, x ∈ X and yj , y ∈ Y . Let {x, y} = xy − q(x, y)yx be the q-deformed
commutator. Assume that there is a natural number p such that

{x1, y1} · · · {xp, yp} ∈ J.
(We say that X and Y are p-almost q-deformed commuting.) Let

Mm,n =
{

(x0, . . . , xm; y0, . . . , yn) ∈ Xm+1 × Y n+1 : q(x0 · · ·xm, y0 · · · yn) = 1
}
.

By means of the operation defined in [9], we may generalize Theorem 1 to the
following.

Theorem 1′. Let k be an even number, k ≥ p, m ∈ N, and n = k+2m. Then there
exists θj = θj(x

0, . . . , xj ; y0, . . . , yj) satisfying τxθj = τyθj on M j,j for j = n − 1
and n− 2 such that

αxαyξn = δxθn−1 − αxSxδyθn−2 + ξ̃n on Mn,n−1,

where

ξ̃n =
1

(2π)2m

k!(k − 1)!

n!(n− 1)!
(αxSx)m(αySy)mαxαyξk.

Let Q = {q(x, y) : x ∈ X, y ∈ Y }. Let W = {(x, y, c) : x ∈ X, y ∈ Y, c ∈ Q} be
the group with multiplication (x0, y0, c0)(x1, y1, c1) =

(
x0x1, y0y1, c0c1q(x0, y1)

)
.

Let p : W → A be the mapping p(x, y, c) = cyx. Then the “curvature” of this
mapping is defined as ω(w0, w1) = p(w0w1)− p(w0)p(w1), w0, w1 ∈ W. For n ≥ p,
define the Chern character of dimension 2n− 1 (see [3] and [5]) as

ch2n−1(w0, . . . , w2n−1)

= τ
(
ω(w0, w1) · · ·ω(w2n−2, w2n−1)− ω(w2n−1, w0) · · ·ω(w2n−3, w2n−2)

)
.

Theorem 5. If p = 1 or 2, then there are (2n− 2)-cyclic cochains f2n−2 such that

ch2n−1 = bf2n−2 off M2n−1,2n−1(26)

for n ≥ p.

Proof. By the proof of the corollary of Theorem 2 in [9], it is easy to see that (26)
holds for n = p. Then the formula (26) for n > p follows from the fact that there is
a constant kn such that ch2n+1 and knS ch2n−1 are in the same cohomology class
by Proposition 15 of Chapter II of [1].
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