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CHERN CHARACTERS ASSOCIATED
WITH ALMOST COMMUTING ALGEBRAS
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(Communicated by Palle E. T. Jorgensen)

ABSTRACT. A trace formula related to p-almost commuting subalgebras X and
Y is established. By means of this formula, homomorphisms from Ko(X) to
H{44(Y) and from K1(X) to H§V®"(Y) are established. An index map from
Ko(X) x K1(Y) to Z is also given.

1. INTRODUCTION

Let A be an algebra over C with trace ideal J and trace 7. Assume X and Y
are two subalgebras of A satisfying the condition that there is a natural number p
such that

[ty 2Pyt e T

for 27 € X and ¢/ € Y, where [z,y] is the commutator zy — yx. Then we say that
X and Y are p-almost commuting. The present note is a continuation of [6], [7],
[8], [9] to study the Chern characters associated with this pair of X and Y in the
context of A. Connes’ theory of noncommutative geometry. First in §2, we establish
a trace formula (8) of

°l

gﬂ(xow" 7xn;y07"' 7yn_1>d:CfT$ xlayo] T [:En?yn]’ n 2p7

which gives the relation of the cyclic cochains A A&, and Ay Ayk1om in terms of
cyclic cohomology (see Theorem 1). As a corollary, it reduces to the trace formula
of

pn(2® 2™yl ") = TRyt 2L
in [7] and [8].

Based on Theorem 1 and A. Connes’ theory, in Theorem 2 and Theorem 3 we
establish homomorphisms from Ko(X) to H{(Y) and K1(X) to H$™(Y) by
means of Chern characters. But for convenience, in the statement of Theorem 3,
we switch the roles of X and Y. In Theorem 4, we give the index map from
Ko(X) x K1(Y) to Z in the case when A is an algebra of operators on a separable
complex Hilbert space. We also give a simple example to show that the index map
is not trivial.
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In §4, we generalize Theorem 1 to the g-deformed (or g-twisted) commutator
case (see Theorem 1’). Besides, we give a theorem (Theorem 5) of Chern character
of odd dimension which is just a remark of the previous work in [9].

2. BASIC FORMULAS

Let X be an algebra over C. Let C" = C"(X) be the space of multilinear
functions f,(2°,...,2"), 27 € X, let t : C"™ — C™ be the operation

(tfn) (2% ... 2") = (=1)"fu(z™, 2% ... 2" 1),

let CY={feC™:tf =f} andlet Af = (1+t+---+t")f, f € C". Let b be the
Hochshild operation C™ — C"*1,

(bf) @, 2™ = (W ). 2T + ()M (a0, ),
where (b'f)(2°,...,2""1) = S0 (1 fula®, . @l T L a™). Let p be the
operation pf = 377 _(n — )t f, f € C", where t° = 1. Define S = 2mibpb’. Then
this operator S coincides with A. Connes’ operator [1] S at Z% = {f € C} : bf = 0}.
Let g be the operation [8] qf = nAf/2 — ptf, f € C™. Let r be the operation [§]
rf =r,(t)f, f € C", for n > 0, where 7,(-) is a polynomial of degree < n — 1
satisfying ¢f = (1 — t)rf, f € C™. For convenience, define S = bpb’ (which is the
operator S in [8] and [9]).

The following well-known identities will be needed. Notice that (1—t)b = b'(1—t)
(cf. [4], [1]) and that p(1 —¢)f = (n+1— A)f, for f € C™ (cf. [8]). Hence

(1) S(1—t)=—bAb
and
(2) (1—1)S = —b'bA.

If f € OF, then Sbf € CY™ and (cf. [8])
N 1 N "
(3) Sbf = n—+1bASf7 fecy.

In the present note, the tensor product spaces C™(X) ® C™(Y) and C¥(X) ®
C(Y) of functions of several variables z' € X and y/ € Y are considered. The
operations ty, by, b, Pu,... Or ty, by, by, py,... are the corresponding operations
t, b, b, p,... with respect to variables x’s and y’s respectively.

In §2 and §3, assume that X and Y are two p-almost commuting subalgebras of
an algebra A over C with trace ideal J and trace 7. Define for n > p

P (a2l ) = a0ty 2y,

Gno1 (2%, 2yl = 1%,y 2 Y,
En(a® o ay® oyt = ety 2y,
(2?2 Tyl Ly = ety [Ty

The following is a special case of Lemma 1 in [9] (or [7], [8]).
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Lemma 1. Forn > p,

(4) Ent1 = bythn, Mnt1 = —tzby¥n,

(5) (1 - tw)&ﬂ = b/z¢n—17 (1 - ty)nn = b;(bn—l?
(6) (1=t ") = batpn_1, (1=t )00 = bydn1,
(7) (1 —ty)hn = b;én — tyén, (L —te)n = by + b

Theorem 1. Letk > p be an even number, m be a natural number, andn = k+2m.
Then there are 0; € C3(X) @ C{(Y), 7 =n—1,n—2 (6, also depending on k),
such that

(8) AmAyén = bwen—l + AwSmbyen—Q + gna
where

- 1 Eklk-1)!
9) €n = ( ) (A2Sa)™ (AySy)™ A Ay&k-

(2m)2™ nl(n — 1)!
Proof. Based on Lemma 1, in [8] (cf. (20) of [8]) it is proved that
(10)  ApAyt; = (3 +1)%; — (G + Dpyb&; — pablyAyn; — (G +1)ay 95,

for j > p. From (4), (10) and the fact that b,&; = 0, we have

1 A 1
(11) §ir1 = m(bmAmAywj + SeAyn;) + mmey¢j7
for j > p. Thus
| + 2 1 N
(12) A Ayl = zﬁmAmAm + mAg;SmAynj,

for j > p, since Ayq, = 0.
Similarly, we have

N 1
(13) Nji+1 = —( (AmbyAyl/JJ + AmSyfj) — j—l—_ltmbyqy(bj’

j+1)2
for j > p. It is easy to see that r,¢; = ry¢@;, since t,ty¢; = ¢;. Denote r,¢; by
r¢; (cf. [8]). From (1), we have

SmtIQy¢J = ‘§$t$(1 - ty)TbeJ' = _gm(l - t$)Ty¢’j

14
( ) = bmA$b$T¢j )

!
for j > p — 1. From (6), it is easy to see that téﬁj =&+ Z_:l tybspj—1. Thus

(15) Ayfj = ]5] + bmpyty¢j—17 Jj=>0p.

Similar to (14), we have Syq,¢; = —b, A,b,r¢;. From (7), Ay¢; = b,A,E;. Hence
bpAy¢; = 0. Thus

(16) brgytypy@ = bv:‘gy(jAyébj/Q = qy9j) = baby Aybyro;.
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From (12), (13), (14), (15) and (16), we have, for j > p,
Jj+3 1
AmAy€j+2 = mb$AmAy(1/JJ+1 - mb$by7"¢])
1

N 1
() BRI
1 N ~
G+2)G+1)% vyt

As in [8], define ®k—1 = @k_g = 0,

1 1 A
i =1 — =bybyréi_1 — ———55:5,0;_
G == Ghebyrdin = STy S50

and ©; = j%AmAij for j > k by mathematical induction. Define
. ) 1 A
gj = AmAy§J — (] + 1)b$@j_1 + ]TlAmSmby@J_Q
From (3) and (17), we have

Eivr = —AuSeAySE /(G +2)(G+ 1), j>k,

which proves (8) and (9) where 6,,_1 = (n+1)0,_1 and 0,,_2 = —0,,_2/(n — 1)27i.
O

Since Az¢,, = Ay¢n, denote it by Ag,. Applying b, to (8), we get the following.

Corollary 1 [8]. Let k > p be an even number, m be a natural number and n =
k+2m. Then there is ©,_1 € CY 1 X)®@ CY 1Y) such that

A(bn = bwbygn—l + éna
where ¢, = kST ST A, /(27)2™nl.

3. CHERN CHARACTERS

Let £ > 1. For (z;5) € My(X), let [(zi;),y] = ([zij,y]), y € Y, where My(X) is
the algebra of £ x £ matrices over X. Define

(18)  (trggn)(a... 2™y’ y ) = (trgr) (202 0] 2"y ),
for 27 € My(X), n > p. For odd n > p— 1 and e € Proj(M,(X)), let

0 n!

che n(y°, ..., y") = (T;)'(—Qm)%ﬂAy(trﬂénH)(e,... ey y™).
!

For f € Z}, let [f] = f+bOY " € HY = Z2/bCY ™. Let HY(Y) be the group
defined in [1].

Theorem 2. The mapping le] — [che2m—1] is a homomorphism from Ko(X) to
H™ YY), 2m > p. It satisfies

(19) [S Che,Qm—l] = [Che,2m+1]a
and it defines a homomorphism from Ko(X) to H34(Y).
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Proof. We only have to consider the case e € Proj(X). It is easy to see (cf. [1])
that for even n,

(20) (bf)(e,...,e)zf(e,...,(3):07 feCf_l,
and
(21) (ASf)(e,....e) = (n+3)(n+2)f(e,...,e)/2, felCm

By (7)7 byAygn(Q .. 7e;y) = Ay¢n(67 cee 7€§y> = AyT[€7y0] T [eayn] = 0 for
odd n > p —1. Thus ch.,, € Z¥(Y). On the other hand, A&, (e, ... e;y) =
(n+ 1) (e,. .., ey) for even n. From (8), (9), (20) and (21), we have

Aynle, ... ey, Yyt = by (A$S'm9n_2)(e, eyl oyt

(k—1)! 0 -1
-nm—==|(4, S,)mA Y,y
+( ) (n_1)|2m [( ) ygk}( -6y, Y )a
for n = 2m + k and k > p, which proves (18). The rest of the proof is similar to
the proof of Proposition 14 of Chapter II of [1]. O

Remark. By (12) and (21), for odd n > p — 1, we also have

nl(n 4+ 2)

chen(y”, ..., y") = W(—%i)%lwy trim,) (e, ... e;9°, ... y™).

For (yi;) € My(Y), let [z, (yij)] = ([x,9i5]), © € X. Define tr &, by (18) for
y) € My(Y) and n > p. For u € GL,(Y) and even n > p, define
(22) Chum(aco7 Tt = kn(AmAy tr ﬂén)(xo, coa™uT L uT ),
where ky, = (—2m8)"?nl/(n+1)(2)12%.

Theorem 3. The mapping [u] — [chyom] 48 a homomorphism from Ki(Y) to
H}™(X), for 2m > p. It satisfies

(23) [S chy,2m] = [chy 2(m+1)]
and it defines a homomorphism from K1(Y) to HY*"(X).

Proof. We only have to consider the case that u € Y and u=! € Y. It is easy to
see that

(24) (Angm_l)(xO, ooty o umu) = 0.
For f € C", n =2m,
(25) bAf = Abf — bf+z —tf) (@t e e,

Jj=1
By (4) and (7) we have
—1

( 1:)&11 = ( - tm>bm7~/}n—1 = b;(l - tzt)wn—l = b;(f)n—la n > P+ 1.

From (24), it follows that (1 — t;)Ay&om(2°,... 2™ u™  u,... ,u= u) = 0. By
b€, = 0 and (25), we have

(bmAJ;Ay{Qm) (2% . 2Pty o um ) = 0.
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Thus chy2m € me. Formula (23) comes from Theorem 1. Let us follow the lines
of the proof of Proposition 15 of Chapter II of [1]. It is easy to see that

{n(xo,... a0 ,y"_l) =0

if one of the y’s is 1. Thus in (22), ©~! and u may be replaced by =1 —1 and u— 1
respectively.
For f € Cfm_l, it is easy to calculate that

(AS’f)(u_l,u,... cu T w) =4(m 4+ Dmfu .. u ).

Similar to the proof of Proposition 15 of Chapter II of [1], we may prove that
chyy 2m — chy 2m — chy, 2., is the boundary of a cyclic cochain in Cim_l(X ) since

byAyén = Apn = —bz At
by (7), which proves the theorem. |

Remark. Similar to (15), by (6), we have Aynm = My, + toPzbyPm—1. Suppose n
is even and > p+ 1. By (24), we have

(Amnn_l)(xo,... 2"t = lu—1,. . u = Lu—1)
=n—=Dn,_1(z% ... 2" % —Lu—1,...,ut —1,u—1).

By (12), we may prove that

(Tl + 1) A — n—1
(AzAy&n — msmAmAynn_l)(.;u L1, u—1) e b~ Y(X).
Thus for even n > p — 1, we may define
Chu,n(xo, oz’

= l%n(A$AytrﬂT]n+1)(x0,... Tt = Lu—1,.. . ut = 1u— 1),

where ]%n = _(_27-‘-1‘)11/2”!/ (nTH)!2n2+2 .

Now let us consider the case that X and Y are p-almost commuting subalgebras
of the operator algebra on a complex separable Hilbert space H and 7 is the usual
trace. In this case, the elements of My(X) or M,(Y) may be regarded as operators
on H ® C*.

Theorem 4. The index map
1 _ _
([e], [u]) = E(—l)m(Ay trﬂﬁgm)(e, eu L u, . u 1,u)
= index eu|range(e),
where e € Proj My(X) and uw € GLy(Y), is a homomorphism from Ko(X) x K1(Y)
to Z.

Proof. Tt is easy to calculate that
(le], [u]) = trace((I — ca)™ — (I —ac)™),
where a = eu}rangc(e) and ¢ = eu™! }rangc(e). The rest of the proof is similar to the

corresponding part of Chapter I of [1]. O

Example. Suppose e is the orthogonal projection from L?(T) to H?(T), and u is
the backward bilateral shift (uf)(z) = Zf(z). Then ([e], [u]) = 1.
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4. DEFORMED COMMUTATOR CASE

Let A be an algebra over C with trace ideal J and trace 7. Let X and Y be
subgroups of A. Assume that there is a function ¢ : X x Y — C satisfying

2
g@'®y'y?) = I a@’y?) and q(x,1) =q(1,y) =1
i,j=1
for ',z € X and ¢,y € Y. Let {z,y} = zy — q(x,y)yx be the g-deformed
commutator. Assume that there is a natural number p such that

{zhy'} - {aP yP} € ).
(We say that X and Y are p-almost ¢g-deformed commuting.) Let

M = {(xo,... ™yl ™) e XMLyt g(al 2™ g0y = 1}.

By means of the operation defined in [9], we may generalize Theorem 1 to the
following.

Theorem 1'. Let k be an even number, k > p, m € N, andn = k+2m. Then there
exists 0; = 0;(2°,... 27590, ... y7) satisfying 7,0; = 7,0; on M’ for j =mn—1
and n — 2 such that

a$ay§n = 6m9n—1 - aztsméyon—Q + gn on Mn,n—l’

where

~ 1 klk—-1) m m

gﬂ = (27T)2m n|(n _ 1>' (al?SI) (O‘ysy) a$0‘y§k~

Let Q = {q(z,y) :z € X,y € Y}. Let W= {(z,y,¢):z € X,y € Y,c € Q} be

the group with multiplication (22,3°,¢%)(z!',y*,c!) = (2%, y%", Petq(2®,yh)).
Let p : W — A be the mapping p(x,y,c) = cyx. Then the “curvature” of this
mapping is defined as w(w®, w!) = p(w’w!) — p(w®)p(w), w°, wt € W. For n > p,
define the Chern character of dimension 2n — 1 (see [3] and [5]) as

Ch2n—1(wo7 o ,wQ"_l)
= 7w, wh) w2 W) = (w1 w0) - w(w?n P, w?h2)).
Theorem 5. If p =1 or 2, then there are (2n — 2)-cyclic cochains fon—o such that
(26) chop_1 =bfon_2 off M2n—1:2n—1
forn > p.

Proof. By the proof of the corollary of Theorem 2 in [9], it is easy to see that (26)
holds for n = p. Then the formula (26) for n > p follows from the fact that there is
a constant k, such that chs,y1 and k,S5 cha,—1 are in the same cohomology class
by Proposition 15 of Chapter IT of [1]. O
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