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Abstract. We prove that each ideal of a locally formally equidimensional
analytically unramified Noetherian integral domain is the contraction of an
ideal of a one-dimensional semilocal birational extension domain. We give
an application to a problem concerning the primary decomposition of powers
of ideals in Noetherian rings. It is shown in an earlier paper by the second
author that for each ideal I in a Noetherian commutative ring R there exists a
positive integer k such that, for all n ≥ 1, there exists a primary decomposition
In = Q1 ∩ · · · ∩Qs where each Qi contains the nk-th power of its radical. We
give an alternate proof of this result in the special case where R is locally at
each prime ideal formally equidimensional and analytically unramified.

In this paper we prove that every ideal in a locally formally equidimensional
analytically unramified Noetherian ring R is the contraction of an ideal of a one-
dimensional semilocal extension which is essentially of finite type over R. If R is
a domain, the extension may be taken to be birational, i.e., with the same field of
fractions as R.

By passing to the extended Rees ring R[It, t−1] of an ideal I of R, these con-
traction properties give a type of uniform primary decomposition for the powers
of I. This is based on the fact that the primary decomposition of a height-one
ideal in a one-dimensional semilocal ring is unique, and the primary decomposition
for powers of a fixed ideal in such a ring is obtained from just taking the powers
of the primary components of the fixed ideal. Furthermore, contracting primary
decompositions from an overring gives a primary decomposition for the contracted
ideal. Our interest in establishing this result was motivated by a question, recently
answered in [S2], concerning the primary decompositions of powers of an ideal.

All rings we consider are commutative and our notation is as in [AM] and [M].

1. Powers of ideals and primary decompositions

Let I be a proper ideal of a commutative Noetherian ring R. It is known that
only finitely many prime ideals of R are associated primes of a power of I [Rat],
and that all suitably large powers of I have the same associated primes [B]. In
considering primary decompositions of the powers of I, it is natural to ask about
the growth of the exponents of primary components of In, where the exponent of
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a primary ideal Q with rad(Q) = P is the smallest positive integer e such that
P e ⊆ Q [ZS, page 153]. If Q is a primary component associated to a minimal
prime P of I, then Q(n), the inverse image in R of QnRP , is the unique P -primary
component of In and the exponent growth of the P -primary component of In is
linearly bounded as a function of n in the sense that if Q has exponent e, then
P en ⊆ Q(n). The situation, however, for embedded associated primes of I is not
as obvious [He], [S1]. By proving a version of the linear uniform Artin-Rees lemma
in the spirit of Huneke’s paper [Hu], it is shown in [S2] that there exist primary
decompositions of the powers In of I for which the exponent growth of the primary
components is linearly bounded. We present here an alternative approach to obtain
a special case of this result.

If I = Q1 ∩ · · · ∩Qs is a primary decomposition, then we clearly have

In ⊆ Qn1 ∩ · · · ∩Qns ,(1.1)

but in general the inclusion in (1.1) may be proper, and powers of a primary ideal
need not be primary.

A case where equality holds in (1.1) is if the intersection of the Qi is also their
product. And a case where the intersection of ideals is their product is that of
pairwise comaximal ideals. Thus if dim(R/I) = 0, then the primary components
of I are pairwise comaximal and for each positive integer n, In = Qn1 ∩ · · · ∩Qns is
the unique irredundant primary decomposition of In. Our proof of a special case of
the linearly bounded exponent growth result of [S2] is based on obtaining primary
decompositions for the powers of I via descent from a regular principal ideal of a
one-dimensional semilocal extension ring.

We use the following elementary lemma.

Lemma 1.2. Suppose R is a subring of a ring S and x ∈ R is a regular element
of S. If xR = xS ∩R, then xnR = xnS ∩R for each positive integer n.

Proof. We clearly have xnR ⊆ xnS ∩ R. Assume by induction that n ≥ 2 and
xn−1R = xn−1S ∩R. Then

xnS ∩R = xnS ∩ xR = x(xn−1S ∩R) = xxn−1R = xnR,

where equality in the middle step uses that x is a regular element of S.

Remark 1.3. With R,S, x as in (1.2), if S is one-dimensional and Noetherian, then
each associated prime of xS is a maximal ideal of S and a minimal prime of xS.
Hence the ideal xS has a unique irredundant primary decomposition, say xS =
Q1 ∩ · · · ∩Qs, and for each positive integer n, xnS = Qn1 ∩ · · · ∩Qns is the unique
irredundant primary decomposition of xnS. If xR = xS∩R, then by (1.2), we have

xnR = (Qn1 ∩R) ∩ · · · ∩ (Qns ∩R)(1.4)

for each positive integer n. Since Qni is primary in S, the ideal Qni ∩R is primary
in R. The decomposition given in (1.4) may fail to be irredundant, but it can be
shortened to an irredundant primary decomposition. Moreover, if rad(Qi) = Mi

and ei is the exponent of Qi, then for k = max{e1, . . . , es} we have Mkn
i ⊆ Qni

for each i, and therefore (Mi ∩ R)kn ⊆ (Qni ∩ R) for each i. This shows that the
exponent growth of the primary components of xnR in a primary decomposition
obtained from (1.4) is linearly bounded.
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Remark 1.5. Let I be an ideal of a Noetherian ring R and let t be an indetermi-
nate over R. With S = R[It, t−1], the extended Rees ring of I, we clearly have
t−nS ∩ R = In for each positive integer n. Therefore to show the existence of
primary decompositions of the powers of I with linearly bounded exponent growth,
by passing from I to the principal ideal t−1S, it suffices to consider the case where
I is a principal ideal generated by a regular element.

In view of (1.3) and (1.5), we are led to ask:

Question 1.6. Suppose R is a Noetherian ring and x ∈ R is a regular element.
Does there exist a one-dimensional Noetherian extension ring S of R such that x is
a regular element of S and xR = xS ∩R?

In §2 we present an affirmative answer to (1.6) for a restricted class of Noetherian
rings by proving that ideals in this restricted class of rings contract from one-
dimensional Noetherian ring extensions. We are aware of no example where (1.6)
has a negative answer.

2. One-dimensional semilocal extension rings

Let R be a Noetherian ring and let I be an ideal in R. We prove in this section
that under certain assumptions on R, I contracts from a one-dimensional semilocal
Noetherian ring extension. Let I = Q1 ∩ · · · ∩ Qs be an irredundant primary
decomposition and let Pi = rad(Qi). Our first step is to prove that each QiRPi
contracts from a Noetherian ring extension of RPi which has smaller dimension
than RPi (see Theorem 2.1 for the precise statement). This and induction on
dimension then imply that each QiRPi , and hence also Qi, is contracted from a
one-dimensional Noetherian ring extension. Theorems 2.3 and 2.4 then prove the
contraction property for all ideals I in locally formally equidimensional analytically
unramified Noetherian rings. Corollary 2.6 then gives the linear growth of exponents
of primary components of powers of an ideal.

Theorem 2.1. Let (R,m) be a reduced local ring and let Q be an m-primary ideal.
Assume that the integral closure R′ of R in its total quotient ring is a finitely
generated R-module and that the height of each maximal ideal of R′ is at least two.
Then there exist regular elements a, b ∈ m such that mR[a/b] is a nonmaximal
prime ideal of R[a/b], and S = R[a/b]mR[a/b] is a local ring with dim(S) < dim(R)
and QS ∩R = Q.

Proof. Since R is reduced, the total quotient ring of R is a finite product of fields
and R′ is a finite product of normal Noetherian domains, say R′ = R′1 × · · · ×R′m.
Let r be a positive integer such that mr ⊆ Q. By the Artin-Rees lemma, there exists
a positive integer n such that mnR′∩R ⊆mr. Let a, b ∈mn be such that the ideal
(a, b)R′ has height two. It follows that a and b are regular elements of R and the
images of a, b in R′i form a regular sequence for 1 ≤ i ≤ m. Let t be an indeterminate
over R′ and let φ′ : R′[t] → R′[a/b] be the R′-algebra homomorphism such that
φ′(t) = a/b. Then R′[t] = R′1[t]×· · ·×R′m[t]. Since the images of a, b in eachR′i form
a regular sequence, ker(φ′) = (bt− a)R′[t]. Let φ : R[t]→ R[a/b] be the restriction
of φ′. Since ker(φ′) ⊂mnR′[t] and ker(φ) = ker(φ′) ∩R[t], ker(φ) ⊂mrR[t]. Since
mR[t] is a nonmaximal prime ideal of R[t] with ht(m) = ht(mR[t]), and since QR[t]
is mR[t]-primary and ker(φ) ⊂ QR[t], it follows that mR[a/b] is a nonmaximal
prime ideal and QR[a/b] is mR[a/b]-primary. Therefore S = R[a/b]mR[a/b] is a
local ring with dim(S) < dim(R) and QS ∩R = Q.
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Corollary 2.2. Let (R,m) be a formally equidimensional analytically unramified
local ring with dim(R) = d ≥ 1, and let Q be an m-primary ideal. There exists a
one-dimensional local extension ring T of R such that T is a subring of the total
quotient ring of R and is essentially of finite type over R, and is such that Q
contracts from T .1

Proof. The fact that R is analytically unramified implies that the integral closure
R′ of R in its total quotient ring is a finitely generated R-module, and that finitely
generated R-subalgebras of the the total quotient ring of R also have this property
[R1, Theorem 1.5]. The assumption that R is formally equidimensional implies
that: (i) R is universally catenary, (ii) equidimensional local rings essentially of
finite type over R are formally equidimensional, and (iii) all the maximal ideal of
R′ have height equal to dim(R) = d [M, Theorem 31.6]. If d > 1, then (2.2) implies
the existence of regular elements a, b ∈ m such that mR[a/b] is a nonmaximal
prime ideal and S = R[a/b]mR[a/b] is a local ring with QS ∩ R = Q. Since R is
equidimensional and universally catenary, dim(S) = d−1, and S is equidimensional,
and therefore formally equidimensional. A simple induction argument implies the
existence of a one-dimensional local extension T of R such that T is essentially of
finite type over R, a subring of the total quotient ring of R, and QT ∩R = Q.

Now let again I = Q1 ∩ · · · ∩ Qs be a primary decomposition of I and let
Pi = rad(Qi). By (2.2) we know that each Qi contracts from a one-dimensional
local extension ring as long as RPi is formally equidimensional and analytically
unramified. The following lemma proves that in this case then I is also contracted
from a one-dimensional extension ring.

Lemma 2.3. With notation as above, assume there exists, for each i, 1 ≤ i ≤ s,
a one-dimensional local extension ring Ti of RPi such that QiRPi = QiTi ∩ RPi .
Let T be the direct product T1 × · · · × Ts. Then T is a one-dimensional semilocal
extension ring of R and I contracts from T , i.e., I = IT ∩R.

Proof. Since the canonical map of R into the direct product RP1 × · · · × RPs is
an injection, and RPi is a subring of Ti for 1 ≤ i ≤ s, the canonical map of R
into T is an injection. It is clear that T is one-dimensional and semilocal. Since
Qi is primary it is the inverse image in R of QiRPi . Therefore QiT ∩ R = Qi for
1 ≤ i ≤ s. Hence

IT ∩R ⊆ (Q1T ∩R) ∩ · · · ∩ (QsT ∩R) = Q1 ∩ · · · ∩Qs = I.

Thus every ideal in a locally analytically unramified and formally equidimen-
sional Noetherian ring is contracted from a one-dimensional Noetherian ring exten-
sion which is essentially of finite type. In case R is an integral domain one can take
the extension to be a domain by replacing the finite direct product in the preceding
proof with an intersection. Theorem 2.4 is related to [GH, (3.21)] which applies to
a Cohen-Macaulay domain.

1An alternative proof of this corollary can be given using work of Rees. For simplicity let
(R,m) be a reduced equidimensional complete local ring, and let Q be an m-primary ideal. There

exists an ideal I, generated by parameters, such that the integral closure of I is contained in
Q [R1]. By [R2], it follows that the equations defining the Rees algebra R[It] have coefficients
contained in Q, and it then follows that a suitable affine piece of the blowup of I, localized at the
extension of the maximal ideal m, satisfies the conclusion of (2.2).
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Theorem 2.4. Let I be an ideal of a Noetherian integral domain R. Assume that
for each P ∈ Ass(R/I) the local ring RP is analytically unramified and formally
equidimensional. Then there exists a one-dimensional semilocal birational extension
T of R such that T is essentially of finite type over R and IT ∩R = I.

Proof. Let Ass(R/I) = {Pi}si=1, and let Qi be a Pi-primary component of I. By
(2.2) there exists a one-dimensional local extension domain Ti of RPi such that Ti
is a subring of the fraction field of R and QiTi ∩ RPi = QiRPi , 1 ≤ i ≤ s. Since
Ti has center Pi on R, for i 6= j, the one-dimensional local domains Ti and Tj are
not dominated by a common valuation domain. Hence by [HO, (2.9) and (2.10)],
T = ∩si=1Ti is a one-dimensional semilocal domain and each localization of T at a
prime ideal is essentially of finite type over R. It follows that T is essentially of
finite type over R, and QiT ∩R = Qi for each i, 1 ≤ i ≤ s, so IT ∩R = I.

As a consequence of these results on contractions of ideals we obtain our results
on exponents of primary components of powers of ideals:

Theorem 2.5. Let R be a Noetherian ring and let x ∈ R be a regular element.
Assume that for each associated prime P of I = xR, the local ring RP is analytically
unramified and formally equidimensional. Then there exists a positive integer k such
that, for all n ≥ 1, there exists a primary decomposition In = Q1 ∩ · · · ∩Qs where
each Qi contains the nk-th power of its radical.

Proof. By (1.3), it suffices to show the existence of a one-dimensional semilocal
extension ring S of R such that x is a regular element of S and xR = xS ∩R. This
follows by (2.2) and (2.3).

Since the passage from a Noetherian ring to an extended Rees ring preserves
the property of being locally formally equidimensional and analytically unramified,
Remark 1.5 and Theorems 2.4 and 2.5 imply:

Corollary 2.6. Let R be a Noetherian ring that is locally at each prime ideal ana-
lytically unramified and formally equidimensional, and let I be an ideal of R. There
exists a one-dimensional semilocal extension ring S of R which is essentially of
finite type over R and is such that every power of I is contracted from a princi-
pal ideal in S. If R is an integral domain one can take S to be a domain. Also,
there exists a positive integer k such that, for all n ≥ 1, there exists a primary
decomposition In = Q1 ∩ · · · ∩ Qs where each Qi contains the nk-th power of its
radical.

Remark 2.7. In general, an ideal I of a Noetherian integral domain R need not be
the contraction of a principal ideal of a birational extension of R. For example, if
K is a field, t is an indeterminate over K, and R is the localization of K[t3, t4, t5]
at the maximal ideal (t3, t4, t5)K[t3, t4, t5], then the ideal I = (t3, t4)R is not the
contraction of a principal ideal of a birational extension of R.

References

[AM] M. Atiyah and I. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Read-
ing, MA, 1969. MR 39:4129

[B] M. Brodmann, Asymptotic stability of Ass(M/InM), Proc. Amer. Math. Soc. 74 (1979),
16–18. MR 80c:13012

[GH] R. Gilmer and W. Heinzer, Ideals contracted from a Noetherian extension ring, J. Pure
Appl. Algebra 24 (1982), 123–144. MR 84a:13006



392 WILLIAM HEINZER AND IRENA SWANSON

[HO] W. Heinzer and J. Ohm, Noetherian intersections of integral domains, Trans. Amer. Math.
Soc. 167 (1972), 291–308. MR 45:5156

[He] J. Herzog, A homological approach to symbolic powers, Commutative Algebra, Proc. of a
Workshop held in Salvador, Brazil, 1988, Lecture Notes in Mathematics 1430, Springer-
Verlag, Berlin, 1990, pp. 32–46. MR 91k:13002

[Hu] C. Huneke, Uniform bounds in Noetherian rings, Invent. Math. 107 (1992), 203–223. MR
93b:13027

[M] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986. MR
88h:13001

[N] M. Nagata, Local rings, Interscience, 1962. MR 27:5790
[Rat] L. J. Ratliff, Jr., On prime divisors of In, n large, Michigan Math. J. 23 (1976), 337–352.

MR 56:15626
[R1] D. Rees, A note on analytically unramified local rings, J. London Math. Soc. 36 (1961),

24–28. MR 23:A3761

[R2] , A note on asymptotically unmixed ideals, Math. Proc. Camb. Phil. Soc. 98 (1985),
33–35. MR 86k:13015

[S1] I. Swanson, Primary decompositions of powers of ideals, Commutative Algebra: Syzygies,
Multiplicities, and Birational Algebra: Proceedings of a summer research conference on
commutative algebra held July 4-10, 1992 (W. Heinzer, C. Huneke, J.D. Sally, ed.), Con-
temporary Mathematics, vol. 159, Amer. Math. Soc., Providence, 1994, pp. 367–371. MR
95a:13002

[S2] , Powers of Ideals: Primary decompositions, Artin-Rees lemma and regularity,,
Math. Annalen (to appear).

[ZS] O. Zariski and P. Samuel, Commutative algebra, Vol. I, Springer, 1975. MR 52:5641

Department of Mathematics, Purdue University, West Lafayette, Indiana 47907-1395

E-mail address: heinzer@math.purdue.edu

Department of Mathematics, New Mexico State University, Las Cruces, New Mexico

88003-8001

E-mail address: iswanson@nmsu.edu


