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A NOTE ON THE BOGOMOLOV-TYPE SMOOTHNESS

ON DEFORMATIONS OF THE REGULAR PARTS

OF ISOLATED SINGULARITIES
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(Communicated by Peter Li)

Abstract. We apply the Tian-Todorov method, proving the Bogomolov
smoothness theorem (for deformations of compact Kähler manifolds) to de-
formations of the regular part of a Stein space with a finite number of isolated
singular points. By the argument based on the Hodge structure on a strongly
pseudo-convex Kähler domain or on a punctured Kähler space, we obtain an

unobstructed subspace of the infinitesimal deformation space.

Introduction

In this paper, we will consider Bogomolov-type smoothness on deformations of
the regular part of a normal isolated singularity. In [B], F. Bogomolov showed the
following new smoothness theorem for the versal family of n-dimensional compact
Kähler manifold: If there exists a non-vanishing holomorphic (n,0)-form, or if
there exists a non-degenerate holomorphic (2,0)-form and b1 = 0, then the versal
deformation space of that Kähler manifold is smooth. G. Tian and A. Todorov
rephrased it in order to show the smoothness of the moduli space of compact Calabi-
Yau manifolds ([Ti], [To]). Our aim is to consider smoothness of this type in the
case of deformations of a normal isolated singularity. Since the smoothness of the
versal family is a problem of formal deformation theory and the formal deformation
theory of an isolated singularity is equivalent to that of its regular part if the depth
of the singularity is greater than or equal to 3 (cf. [S]), we will consider formal
deformations of the regular part of an isolated singularity. Let V be a normal Stein
space with a finite number of isolated singular points S := {p1, . . . , pk}, π : X → V
a resolution of singularities, and denote E := π−1(S). Then X is a strongly pseudo-
convex Kähler manifold with an exceptional subset E. Let r : X → [−∞,+∞)
be a strictly plurisubharmonic exhaustion function such that E =

⋂
ε Ωε, where

Ωε := {x ∈ X | r(x) < ε}. We may assume that dr 6= 0 on Ωa \ E and outside Ωb
for some a ≤ b.

We consider deformations of U := X \ E. As was shown in [Ak-M], even if KU

is trivial, the (formal) versal family of deformations of U is not necessarily smooth.
In fact, there might be an obstructed infinitesimal deformation class in H1(U,ΘU).
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So, in this paper, we will consider unobstructedness of a subspace of H1(U,ΘU),
where we call a subspace unobstructed if there exists a formal smooth family whose
infinitesimal deformation space coincides with that subspace.

The main reason for the failure of the analogue of the Bogomolov smoothness
theorem in the case of deformation of U is the non-existence of pure Hodge structure
on H∗(U,C). However, since there exists a pure Hodge structure of weight ≥ n+ 1
on H∗(Ωc,C), n = dimV (cf. [D], [O1], [O-T]), we can expect some effect on
deformations of U . The following is the main theorem.

Theorem A. Suppose that there exists an effective divisor D ∈ | − KX | with
SuppD ⊂ E or KX is trivial. Then the subspace

Im(H1(X,ΘX(−D))→ H1(U,ΘU))

is unobstructed, where we denote ΘX(−D) = ΘX if KX = 1X.

Since any relatively compact Stein domain of V can be completed to a projective
variety (cf. [Ar], [L]), we may assume thatX is an open domain of a compact Kähler
manifold X̄ . Using the pure Hodge structure of weight ≤ n − 2 on the punctured
Kähler space X

′
:= X̄ \E (cf. [O2]), we also have

Theorem B. Suppose dimV ≥ 4 and there exists a non-degenerate holomorphic
(2, 0)-form ω on U which is extendable to a non-degenerate holomorphic (2, 0)-form

over X
′

or to a closed meromorphic (2, 0)-form over X
′

such that the component of
the local expression (ωij) of that meromorphic (2,0)-form has a holomorphic inverse.

Then the subspace Im(H1(X
′
,Ω1

X′
)→ H1(U,Ω1

U ) ' H1(U,ΘU)) is unobstructed.

We will prove these theorems in §§2 and 3. Our proof is an analogue of the Tian-
Todorov argument and depends on the Hodge structures stated above. Hence, in
§1, we will derive the key properties for that argument from the Hodge structure
on Ωc or on X

′
(Corollary 1.4). In §4, we will mention briefly an example discussed

in [M].
I would like to thank Professors T. Ohsawa and M. Tomari for helpful discussions

in this work. In particular, the proof of Proposition 1.3 is due to Professor T.
Ohsawa.

§1. ∂∂̄-lemma and In−1,1
X = Hn−1,1

X

Let X be a complex manifold with dimCX = n. Consider the double complex
(Ap,qX , ∂, ∂̄). The Tian-Todorov method heavily depends on the Hodge structure
about this double complex, in particular on the following two properties:

(1.1) In−1,1
X = Hn−1,1

X .

(1.2) (∂∂̄-lemma at An−1,2
X ) If an (n− 1, 2)-form is d-closed and ∂-exact, then it is

∂∂̄-exact.

Here we denote by Hp,q
X the q-th Dolbeault cohomology group of (Ap,•X , ∂̄), and

Ip,qX := Ker∂̄ ∩ Zp,qX /∂̄Ap,q−1
X ∩ Zp,qX with Zp,qX := {α ∈ Ap,qX |∂α = 0}.

In this section, we will discuss the property Ip,qX = Hp,q
X and the ∂∂̄-lemma on

a strongly pseudo-convex Kähler domain Ωc or on a punctured Kähler space X
′
.

The Hodge structure on Ωc (resp. on X
′
), established in [O1] (see also [D], [O-T])

(resp. in [O2]), asserts the existence of ϕp,qν ∈ A
p,q
X (p+ q = k, 1 ≤ ν ≤ hp,qX < +∞)

satisfying the following (k ≥ n+ 1 for Ωc and k ≤ n− 2 for X
′
):

(1.3) dϕp,qν = 0,
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(1.4) {[ϕp,qν ]}1≤ν≤hp,qX is a basis of Hq(X,Ωp), where [ϕp,qν ] denotes the cohomology

class of ϕp,qν in Hq(X,Ωp),
(1.5) {[ϕp,qν ]}p+q=k,1≤ν≤hp,qX is a basis of Hk(X,C), where [ϕp,qν ] denotes the coho-

mology class of ϕp,qν in Hk(X,C),
(1.6) {[ϕ̄p,qν ]}1≤ν≤hp,qX is a basis of Hp(X,Ωq).

Remark. The condition (1.6) is superfluous; in fact, it follows from (1.3)–(1.5).

Lemma 1.1. Let k ≥ 1 and suppose that there exist ϕp,qν ∈ Ap,qX (1 ≤ ν ≤ hp,qX )
satisfying (1.3)–(1.6) for all (p, q) with p + q = k. If αp,q ∈ Ap,qX (p + q = k) is

∂̄-closed and ∂-exact, then αp,q ∈
⊕

p′+q′=k−1,q′≥q dA
p
′
,q
′

X .

Proof. Throughout the proof, we use the notation ϕs,t as a linear combination of
{ϕs,tν }1≤ν≤hs,tX and ys,t as an element of As,tX . Note that As,tX = 0 unless s(s−n) ≤ 0

and t(t − n) ≤ 0. Let αp,q = ∂yp−1,q. Since ∂̄αp,q = 0, we have ∂yp−1,q =
ϕp,q−∂̄yp,q−1 by (1.4). Since ∂̄∂yp,q−1 = 0, we have ∂yp,q−1 = ϕp+1,q−1−∂̄yp+1,q−2

by (1.2) again. Repeating this argument, we have

∂yp−1,q + d(yp,q−1 + yp+1,q−2 + · · ·+ yn,p+q−n−1)

= ϕp,q + ϕp+1,q−1 + · · ·+ ϕn,p+q−n.

On the other hand, applying the above argument to ∂yp−1,q, we have

∂̄yp−1,q + d(yp−2,q+1 + yp−3,q+2 + · · ·+ yp+q−n−1,n)

= ϕp−1,q+1 + ϕp−2,q+2 + · · ·+ ϕp+q−n,n.

Hence we have [ϕp+q−n,n + · · ·+ϕp,q + · · ·+ϕn,p+q−n] = 0 in Hk(X,C). By (1.5),
we have ϕp−1,q+1 = ϕp−2,q+2 = · · · = ϕp+q−n,n = 0 and

αp,q = d(yp−1,q + yp−2,q+1 + · · ·+ yp+q−n−1,n).

Proposition 1.2. Under the assumption of Lemma 1.1, the ∂∂̄-lemma holds at
Ap,qX for all (p, q) with p+ q = k and r ≤ q ≤ n if and only if Is,tX = Hs,t

X holds for
all (s, t) with s+ t = k − 1 and r ≤ t ≤ n.

Proof. We use the same notation as in the proof of Lemma 1.1. Let αp,q ∈ Ap,qX
and βp−1,q ∈ Ap−1,q

X (p + q = k) satisfy ∂̄αp,q = 0 and αp,q = ∂βp−1,q. Then by
Lemma 1.1,

αp,q = d(yp−1,q + yp−2,q+1 + · · ·+ yp+q−n−1,n).

Since Ip+q−n−1,n
X = Hp+q−n−1,n

X holds, we have

yp+q−n−1,n = ϕp+q−n−1,n + ∂̄γp+q−n−1,n−1.

Since dϕp+q−n−1,n = 0, if we set

y
′p+q−n−2,n−1 := yp+q−n−2,n−1 − ∂γp+q−n−1,n−1,

we have ∂̄y
′p+q−n−2,n−1 = 0 and ∂y

′p+q−n−2,n−1 = ∂yp+q−n−2,n−1. Repeating this
argument, we have a γp−1,q−1 ∈ Ap−1,q−1

X such that

∂(yp+q−n−2,n−1 − ∂̄γp−1,q−1) = 0.

Therefore we have αp,q = −∂∂̄γp−1,q−1. The only if part is proved by a standard
argument.
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About Is,tΩc
= Hs,t

Ωc
for s+ t = n, we have

Proposition 1.3. Is,tΩc
= Hs,t

Ωc
holds for (s, t) with s+ t = n and t ≥ 1.

Proof (due to T.Ohsawa). We use the same notation as in the proof of Lemma
1.1. We introduce a complete Kähler metric over Ωc associated to the Kähler form
ω−
√
−1∂∂̄log(c− r), where ω denotes the Kähler form on X . Then it is proved in

[O1] that the following hold:

(i) For k ≥ n+ 1, the restriction β|Ωc of a β ∈ Lkloc(Ωc+ε) (ε > 0) is an L2-form
on Ωc.

(ii) For k ≥ n + 1, the natural homomorphism Hk(Ωc,C) → Hk
(2)(Ωc,C) is an

isomorphism, where Hk
(2)(Ωc,C) denotes the L2-cohomology group.

(iii) The image of ∂̄ : Lp,qΩc
→ Lp,q+1

Ωc
is closed, where Lp,qΩc

denotes the space of L2

(p, q)-forms on Ωc.

Let αp,q ∈ Ap,qΩc
(p + q = n, q ≥ 1) be a ∂̄-closed form. It is enough to find a

γp,q−1 ∈ Ap,q−1
Ωc

satisfying ∂∂̄γp,q−1 = ∂αp,q. Since Hq(X,Ωp)→ Hq(Ωc,Ω
p) is an

isomorphism, we may assume that αp,q can be extendable to X . By (i) and (ii), we
have that ∂αp,q is an L2-form, and ∂αp,q = dy for some C∞ and L2-form y on Ωc.
Let y = y0,n + y1,n−1 + · · ·+ yn,0, ys,t ∈ As,tΩc

∩ Ls,tΩc
. By (iii), we can find γ0,n−1 ∈

A0,n−1
Ωc

∩ L0,n−1
Ωc

such that ∂̄∗(y0,n − ∂̄γ0,n−1) = 0 and ∂̄∗γ0,n−1 = 0 hold. Hence

we have (y0,n − ∂̄γ0,n−1) = 0. This implies ∂(y0,n − ∂̄γ0,n−1) = 0, since = 1
2∆.

If we set y
′1,n−1 := y1,n−1 − ∂γ0,n−1 ∈ A1,n−1

Ωc
∩ L1,n−1

Ωc
, we have ∂̄y

′1,n−1 = 0 and

∂y
′1,n−1 = ∂y1,n−1. Here we remark that ∂γ0,n−1 ∈ L1,n−1

Ωc
holds, since γ0,n−1,

∂̄γ0,n−1 and ∂̄∗γ0,n−1 are all L2-forms. Repeating this argument, we finally have a
γp,q−1

1 ∈ Ap,q−1
Ωc

∩ Lp,q−1
Ωc

such that ∂yp,q = ∂∂̄γp,q−1
1 holds. Next, by applying the

same argument to yn,0, . . . , yp+1,q−1, we have a γp,q−1
2 ∈ Ap,q−1

Ωc
∩ Lp,q−1

Ωc
such that

∂̄yp+1,q−1 = ∂∂̄γp,q−1
2 holds. Therefore, we have

∂∂̄(γp,q−1
1 − γp,q−1

2 ) = ∂yp,q + ∂̄yp+1,q−1 = ∂αp,q.

Therefore we have

Corollary 1.4. (1) Ip,qΩc
= Hp,q

Ωc
holds if p+ q ≥ n+ 1, or if p+ q = n and q ≥ 1.

The ∂∂̄-lemma holds at Ap,qΩc
if p+ q ≥ n+ 1,

(2) Ip,q
X′

= Hp,q

X′
holds if p+q ≤ n−2. The ∂∂̄-lemma holds at Ap,q

X′
if p+q ≤ n−2.

§2. Proof of Theorem A

In this section, we consider deformations of Ωc and their effect on deformations
of U := Ωc \E. We remark that, since the (formal) deformation theories of Ωc and
Ωc \E are both independent of c ∈ (−∞, a) ∪ [b,∞) and we consider V as a germ
of complex space at S, we may consider Ωc instead of X ; hence we may assume
that Corlllary 1.4 (1) holds on X . Then, the following analogue of the Bogomolov
smoothness theorem is clear.

Theorem 2.1. If KX is trivial, then the space H1(X,ΘX) is unobstructed for
deformations of X.
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Theorem A for the case of KX = 1X immediately follows from Theorem 2.1.
Next, we consider the situation that there exists a meromorphic (n, 0)-form ω with
only poles D supported in E, and prove the following theorem:

Theorem 2.2. Suppose that there exists an effective divisor D ∈ | − KX | with
SuppD ⊂ E. Then the subspace Im(H1(X,ΘX(−D)) → H1(U,ΘU)) is unob-
structed.

Proof. Since ι(φ) = ωcφ, we have an isomorphism

ι : A0,q
X (T ′X(−D)) −→ An−1,q

X .

Then by direct calculations, we have
(2.1) If φ ∈ A0,1

X (T ′X(−D)), then ∂̄φ ∈ A0,2
X (T ′X(−D)).

(2.2) If φ, ψ ∈ A0,1
X (T ′X(−D)), then [φ, ψ] ∈ A0,2

X (T ′X(−D)).
And by the same calculations as in [Ti] or [To], we have

(2.3) ∂̄ι = ι∂̄.
(2.4) If ∂α = ∂β = 0, then ι[ι−1α, ι−1β] = ∂(ι−1αcβ).
By (2.3), we have an isomorphism Hq(X,ΘX(−D)) ∼= Hq(X,Ωn−1

X ). By Corol-

lary 1.4 (1), we can choose {αn−1,1
ν }1≤ν≤d ⊂ Zn−1,1

X such that {[ι−1αn−1,1
ν |U ]}1≤ν≤d

is a basis of Im
(
H1(X,ΘX(−D))→ H1(U,ΘU)

)
. Then, by the same argument

of [Ti] or [To], we can construct a formal power series α(s) ∈ An−1,1
X [[s1, . . . , sd]]

satisfying
(2.5) ∂̄α(s) − 1

2∂(ι−1α(s)cα(s)) = 0,

(2.6) α(s) ≡
∑d
ν=1 α

n−1,1
ν sν mod m2, where m denotes the maximal ideal of

C[[s1, . . . , sd]].
Hence if we set φ(s) := ι−1α(s), then it satisfies
(2.7) ∂̄φ(s) − 1

2 [φ(s), φ(s)] = 0,

(2.8) φ(s) ≡
∑d
ν=1 ι

−1αn−1,1
ν sν mod m2.

By restricting φ(s) on U , we have a formal family of deformations of U whose
infinitesimal deformation space is Im(H1(X,ΘX(−D))→ H1(U,ΘU)). Hence that
space is unobstructed.

This completes the proof of Theorem 2.2.

§3. Proof of Theorem B

In this section, we consider deformations of X
′

and their effect on deformations
of U . By Corollary 1.4 (2), the following analogue of the Bogomolov smoothness

theorem is clear. (Note that all holomorphic (2,0)-forms on X
′

are d-closed by
Corollary 1.4 (2).)

Theorem 3.1. If there exists a non-degenerate holomorphic (2, 0)-form on X
′
,

then the space H1(X
′
,ΘX′ ) is unobstructed for deformations of X

′
.

Next, we suppose that there exists a non-degenerate holomorphic (2, 0)-form ω

on U which is extendable to a closed meromorphic (2, 0)-form on X
′

such that
(ωij) has a holomorphic inverse, where we denote the meromorphic (2,0)-form by
ω = 1

2

∑
i,j ωijdz

i ∧ dzj, with local meromorphic functions ωij , with respect to a

local coordinate (z1, . . . , zn) of X
′
. Then we have
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Theorem 3.2. Suppose that there exists a non-degenerate holomorphic (2, 0)-form

ω on U as above. Then the subspace Im
(
H1(X

′
,Ω1

X′
)→ H1(U,Ω1

U ) ' H1(U,ΘU)
)

is unobstructed.

Proof. Since ι(φ) = ωcφ, we have homomorphisms

ι−1 : A1,q

X′
−→ A0,q

X′
(T
′
X
′
)

and

ι : ι−1(A1,q

X′
) −→ A1,q

X′
.

Lemma 3.3. (1) ∂̄ι−1 = ι−1∂̄.
(2) If ∂ξ = ∂η = 0, then ι[ι−1ξ, ι−1η] = ∂(ι−1ξcη). In particular, [ι−1ξ, ι−1η] ∈

ι−1(A1,2

X′
).

Proof. (1) is clear.
(2) Let

(
hα,i

)
be a holomorphic (n, n)-matrix satisfying

(
hα,i

)
(ωi,γ) =

(
δαγ
)

and

(ωi,γ)
(
hγ,j

)
=
(
δji

)
. Suppose ξ =

∑
i,β ξi,β̄dz

i ∧ dz̄β and η =
∑
j,δ ηj,δ̄dz

j ∧
dz̄δ satisfy ∂ξ = ∂η = 0. Since

[ι−1ξ, ι−1η] =
1

2

∑
α,β,δ

∑
i,j,γ

{(
hγihαjξiβ̄

∂ηjδ̄
∂zγ

− hαihγjηjδ̄
∂ξiβ̄
∂zγ

)

−
(
hγihαjξiδ̄

∂ηjβ̄
∂zγ

− hαihγjηjβ̄
∂ξiδ̄
∂zγ

)
+

(
hγi

∂hαj

∂zγ
− hγj ∂h

αi

∂zγ

)
(ξiβ̄ηjδ̄ − ξiδ̄ηjβ̄)

}
∂

∂zα
⊗ dz̄β ∧ dz̄δ

and ∂ξ = ∂η = 0, we have

ι[ι−1ξ, ι−1η] =
1

2

∑
k,β,δ

∑
i,j,α,γ

{
hγi
(
ξiβ̄

∂ηγδ̄
∂zk

− ξiδ̄
∂ηγβ̄
∂zk

)
− hγj

(
∂ξγβ̄
∂zk

ηjδ̄ −
∂ξγδ̄
∂zk

ηjβ̄

)

+ ωkα

(
hγi

∂hαj

∂zγ
− hγj ∂h

αi

∂zγ

)
(ξiβ̄ηjδ̄ − ξiδ̄ηjβ̄)

}
dzk ∧ dz̄β ∧ dz̄δ.

On the other hand, since ι−1ξcη = 1
2

∑
β,δ

∑
i,α h

αi(ξiβ̄ηαδ̄ − ξiδ̄ηαβ̄)dz̄β ∧ dz̄δ
and hiα = −hαi, we have

∂(ι−1ξcη) =
1

2

∑
k,β,δ

∑
i,α

{
hαi

(
ξiβ̄

∂ηαδ̄
∂zk

− ξiδ̄
∂ηαβ̄
∂zk

)

− hiα
(
∂ξiβ̄
∂zk

ηαδ̄ −
∂ξiδ̄
∂zk

ηαβ̄

)
+
∂hαi

∂zk
(ξiβ̄ηαδ̄ − ξiδ̄ηαβ̄)

}
dzk ∧ dz̄β ∧ dz̄δ.

Hence (2) follows from the following

Claim.

∂hji

∂zk
=
∑
α,γ

ωkα

(
hγi

∂hαj

∂zγ
− hγj ∂h

αi

∂zγ

)
.
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Proof. By hji =
∑
α,γ h

jγωγαh
αi and dω = 0, we have

∂hji

∂zk
= −

∑
α,γ

hjγ
(
∂ωkα
∂zγ

+
∂ωγk
∂zα

)
hαi.

Hence the claim follows from
∑
α ωkαh

αi = δik and
∑
γ h

jγωγk = δjk.

Then by the same argument as in §2, we have a formal power series α(s) ∈
A1,1

X′
[[s1, . . . , sd]] satisfying

(3.1) ∂̄α(s) − 1
2∂(ι−1α(s)cα(s)) = 0,

(3.2) the linear part of ι−1α(s)|U spans

Im
(
H1(X

′
,Ω1

X′
)→ H1(U,Ω1

U) ' H1(U,ΘU)
)
,

where d = dimCIm
(
H1(X

′
,Ω1

X′
)→ H1(U,Ω1

U) ' H1(U,ΘU)
)

.

Hence, if we set φ(s) := ι−1α(s)|U , then we have

(3.3) ∂̄φ(s) − 1
2 [φ(s), φ(s)] = 0,

(3.4) the linear part of φ(s) spans

Im
(
H1(X

′
,Ω1

X′
)→ H1(U,Ω1

U) ' H1(U,ΘU)
)
.

This completes the proof of Theorem 3.2.

§4. Examples (Deformations of quasi-Gorenstein cone singularities)

We consider deformations of quasi-Gorenstein cone singularities as an example
of our argument. For detailed discussion, see [M]. Let Y be a projective algebraic
manifold and π : F → Y a negative line bundle. We denote by X the total space
of F , by D0 the 0-section of F and U := X \D0.

Example 4.1. We suppose that the canonical line bundle KU is trivial. Then
KY ' Fµ for some µ ∈ Z.

(1) The case of KY ' Fµ (µ > 1): Since H2(X,ΘX) ' H2(X,Ωn−1
X (K−1

X )) = 0
([N]), the subspace Im(H1(X,ΘX)→ H1(U,ΘU)) is unobstructed.

(2) The case of KY ' F−µ (µ ≥ −1): Since KX ' π∗(F−µ−1), by Theorem A,
the space Im(H1(X,ΘX(−(µ+1)D0))→ H1(U,ΘU)) is unobstructed, where
we denote ΘX(−(µ+ 1)D0) := ΘX if µ = −1.

Example 4.2. Let Y := P(T ∗Pn) (n ≥ 2) and F the dual tautological line bundle.
We denote by X̄ the associated P1-bundle and by D∞ the ∞-section. Then X :=
X̄ \ D∞ is a special case of Example 4.1 (1) and X

′
:= X̄ \ D0 is a punctured

Kähler space. Since there exists a closed meromorphic (2,0)-form on X
′

which is

non-degenerate and holomorphic on U and having a holomorphic inverse on X
′
, by

Theorem B, the space Im(H1(X
′
,Ω1

X′
)→ H1(U,ΘU)) is unobstructed.

Remark. In either case of these examples, the above unobstructed subspace of
H1(U,ΘU) induces an unobstructed subspace of Ext1(Ω1

V ,OV ), where we denote
by V the germ of a normal complex space obtained by contracting D0.
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