RADIAL LIMIT OF LACUNARY FOURIER SERIES WITH COEFFICIENTS IN NON-COMMUTATIVE SYMMETRIC SPACES

CAMIL MUSCALU

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let E be a rearrangement invariant space, $\Lambda \subseteq \mathbb{Z}$ an arbitrary set and (M,τ) a von Neumann algebra with a semifinite normal faithful trace. It is proved that the associated symmetric space of measurable operators $E(M,\tau)$ has Λ -RNP if and only if E has Λ -RNP extending in this way some previous results by Q. Xu.

1. Introduction

The aim of the present note is to solve a problem concerning the Λ -Radon Nikodym property (in short Λ -RNP) in symmetric spaces of measurable operators. For stating our result we shall introduce first the necessary notations and definitions. Let $\Lambda \subseteq \mathbb{Z}$ be an arbitrary set. A Banach space B is said to have Λ -RNP if and only if every B-valued bounded lacunary Fourier series $f(re^{it}) = \sum_{n \in \Lambda} a_n r^{|n|} e^{int}$ on the unit disc D in the complex plane has radial limit at the boundary almost everywhere. As was proved in the paper of Buchvalov and Danilevich [BD] we have \mathbb{Z} -RNP=RNP, the usual Radon Nikodym property and also \mathbb{N} -RNP=ARNP, the so-called analytic Radon Nikodym property. We consider now (M,τ) a semifinite von Neumann algebra acting on a Hilbert space H, with a normal faithful trace τ . Let \overline{M} be the space of all measurable operators with respect to (M,τ) in the sense of [N] equipped with the measure topology defined there. For $a \in \overline{M}$ and t > 0 the t-th singular number of a is defined by (cf. [FK])

$$\mu_t(a) = \inf\{ \|ae\| ; e \text{ is a projection in } M, \tau(1-e) \leq t \}.$$

The function $t \to \mu_t(a)$ will be denoted by $\mu(a)$. For the main properties of this function the reader is referred to [FK]. Let also E be a rearrangement invariant (r.i.) function space on $(0, \infty)$ (cf. [LT]). We define the non-commutative symmetric space associated with (M, τ) and E as follows (cf. [DDP1]):

$$E(M,\tau) = \{ a \in \overline{M} : \mu(a) \in E \},$$

$$||a||_{E(M,\tau)} = ||a||_E = ||\mu(a)||_E, \ a \in E(M,\tau).$$

More exactly, we shall consider throughout this paper the following two cases in order to preserve the main situations from the commutative case. If (M, τ) is

Received by the editors September 5, 1995.

1991 Mathematics Subject Classification. Primary 47B10, 47B35.

Key words and phrases. Lacunary Fourier series, Measurable operators.

diffuse (cf. [SZ]) then E is taken to be a r.i. space on $[0, \tau(1))$ and when (M, τ) is completely atomic with all the minimal projections of the same trace, E will be a r.i. sequence space (cf. [LT]).

The problem we are mainly concerned here is if Λ -RNP for E is equivalent with Λ -RNP for $E(M,\tau)$. Actually, in this paper we settle this question in the affirmative. In the particular cases $\Lambda = \mathbb{Z}$ and $\Lambda = \mathbb{N}$ this study was done in [X2] and [X1] respectively. In [X1] the author also considered some other cases such as uniform convexity (see also [M]), uniform PL-convexity and uniform H-convexity. Note however that such a result does not hold for AUMD property which does not pass from E to $E(M,\tau)$ even in the particular case of the Schatten class (cf. [HP]). Also there exists E_1 isomorphic with E_2 and such that $E_1(M,\tau)$ is not equal with $E_2(M,\tau)$ (cf. [A] where such an example is given for M=B(H)). The arguments from [X1, X2] do not seem to work in this more general case. Our solution is based on some recent results of the author in [M] and also on a compactness theorem in [DDP2].

2. The proof

Let T be the unit circle equipped with its normalised Haar measure dm. We recall first that a vector measure $F:(T,dm)\to B$ has L^{∞} -bounded variation (cf. [DU]) if and only if there exists C > 0 such that $||F(A)||_B \leq C \cdot m(A)$ for every measurable subset A of T. The smallest constant for which the inequality holds is called the L^{∞} -norm of F. For $\Lambda \subseteq \mathbb{Z}$ we shall denote by $V_{\Lambda}^{\infty}(B)$ the space of all vector measures F with L^{∞} -bounded variation and for which the Fourier coefficients

$$\widehat{F}(n) = \int e^{-int} dm(t) = 0$$

for all $n \in \mathbb{Z} \setminus \Lambda$. F is said to be representable if there exists $f \in L^{\infty}(B)$ such that $F = f \cdot dm$. Also, we define $H^{\infty}_{\Lambda}(B)$ to be the Hardy space of all functions $f: D \to B$ of the form $f(re^{it}) = \sum_{n \in \Lambda} a_n r^{|n|} e^{int}$ endowed with the L^{∞} -norm. For proving our main result we need the next lemma which can be proved as in [Bl].

Lemma 2.1. Let $\Lambda \subseteq \mathbb{Z}$ and B be an arbitrary Banach space. Then,

- (a)
- $H^{\infty}_{\Lambda}(B) = V^{\infty}_{\Lambda}(B)$ via the Poisson integral. B has Λ -RNP iff every $F \in V^{\infty}_{\Lambda}(B)$ is representable. (b)

We can present now the main theorem in this paper as follows.

Theorem 2.2. We consider $\Lambda \subseteq \mathbb{Z}$ as above. A rearrangement invariant space E has Λ -RNP if and only if its non-commutative analogue $E(M, \tau)$ has Λ -RNP.

Proof. We shall give the proof in the "continuous case" when (M,τ) is diffuse. The "discrete case" can be done in the same way with some minor natural changes. Since E is isometric isomorphic with a closed subspace of $E(M,\tau)$ it is sufficient to prove just "E has Λ-RNP $\Rightarrow E(M,\tau)$ has Λ-RNP". We can assume card $\Lambda = \infty$ (if not, all Banach spaces have Λ -RNP) and remark as in [BD] that E does not contain any copy of c_0 . In particular the dual space E^* is equal with the associate space E'(cf. [LT]). We consider first the situation $\tau(1) < \infty$ and we take $F \in V_{\Lambda}^{\infty}(E(M, \tau))$. To settle our problem we have to show that F is representable (cf. lemma 2.1) or more particular, ReF is representable (F = ReF + iImF). Using a result from [DU] it is also sufficient to prove that for any $A \subseteq T$, $m(A) \neq 0$, there exists $A_0 \subseteq A$, $m(A_0) \neq 0$ such that the set

(2.1)
$$A(A, A_0) = \{ \frac{ReF(B)}{m(B)} ; B \subseteq A_0, m(B) \neq 0 \}$$

is relatively weakly compact or, equivalently, relatively $\sigma(E(M,\tau),E'(M,\tau))$ compact by a result from [DDP2]. Anyway, since (T,dm) is countable generated we deduce (cf. [DU]) that the range of ReF is included into a separable subspace of $E(M,\tau)$. By a density result in [M] this implies that there exists a countable set $\mathcal{C} \subseteq E(M,\tau)$ such that every $T \in \mathcal{C}$ is selfadjoint, has $\mu(T)$ invertible and every element in $\overline{Sp(range(ReF))}$ can be approximated in the norm of $E(M,\tau)$ by a net of measurable operators from \mathcal{C} . Let's say $\mathcal{C} = (T_n)_n$. For every $n \in \mathbb{N}$ there exists (cf. [M]) a bounded linear map

$$\Phi_n: E(M,\tau) \to E$$

with $\Phi_n(|T_n|) = \mu(T_n)$ and the norms of Φ_n do not depend on $n \in \mathbb{N}$. Also, we define as in [M]

$$\Psi_n: E \to E(M, \tau),$$

$$\Psi_n(f) = f \circ \mu^{-1}(T_n)(|T_n|)$$

and recall (cf. [M]) that $\mu(\Psi_n(f)) = f^*$, the usual nonincreasing rearrangement of |f| (cf. [LT]). This means in particular that the space $E_n = \Psi_n(E) \subseteq E(M,\tau)$ is in fact a "copy" of E which "stays" on the "direction" of $|T_n|$. After this preparation, we can start the proof of (2.1). So, let's fix $A \subseteq T$, $m(A) \neq 0$ and we want to define A_0 . For this, we also consider $n \in \mathbb{N}$ and since E_n has Λ -RNP it follows (cf. lemma 2.1) that the measure $\Psi_n \circ \Phi_n \circ ReF$ is representable. We obtain by a result from [DU] that for every $\epsilon > 0$ and every $C \subseteq T$, $m(C) \neq 0$ there exists $C_0 \subseteq C$, $m(C_0) \neq 0$, $m(C \setminus C_0) < \epsilon$, such that

(2.2)
$$\mathcal{A}^{n}(C, C_{0}) = \left\{ \frac{\Psi_{n} \circ \Phi_{n} \circ ReF(D)}{m(D)}; D \subseteq C_{0}, m(D) \neq 0 \right\}$$

is relatively norm compact in E_n . Now, it is obvious to choose a set $A_0 \subseteq A$, $m(A_0) \neq 0$, with the property that for every $n \in \mathbb{N}$ the set $\mathcal{A}^n(A, A_0)$ is relatively norm compact in E_n . We will show that this A_0 is a good set for our problem. To see that $\mathcal{A}(A, A_0)$ is relatively $\sigma(E(M, \tau), E'(M, \tau))$ compact is equivalent (using a result from [DDP2] since $\tau(1) < \infty$) to proving the following assertion:

"For every $x \in E'(M,\tau)$ and $(x_n)_n \subseteq \Omega(x) := \{z : \int_0^t \mu_s(z) ds \leq \int_0^t \mu_s(x) ds \}$ with $x_n \to x$ (μ) we have

$$\sup\{\int_0^\infty \mu_t(x_n)\mu_t(y)dt; y \in \mathcal{A}(A, A_0)\} \to 0.$$

We assume that the above statement is false. This means that there exists $x \in E'(M,\tau)$, $(x_n)_n \subseteq \Omega(x)$, $x_n \to 0(\mu)$ and $\epsilon > 0$, $(y_n)_n \subseteq \mathcal{A}(A,A_0)$ such that

(2.3)
$$\int_{0}^{\infty} \mu_{t}(x_{n})\mu_{t}(y_{n})dt > 2\epsilon, \quad n = 1, 2,$$

Let $y_n = \frac{ReF(B_n)}{m(B_n)}$, $n \in \mathbb{N}$. Arguing as in [M] it is not difficult to see that there exists $(y_n^1)_n \subseteq E_1$ with $\tau(y_n a) = \tau(y_n^1 a)$ for every $a \in E_1' (= \Psi_1(E'))$, $n \in \mathbb{N}$, and

$$\mu(y_n^1) = \mu(\frac{\Psi_1 \circ \Phi_1 \circ ReF(B_n)}{m(B_n)}), \ n \in \mathbb{N}.$$

Using the same compactness result from [DDP2] (see the above "assertion") together with (2.2) we obtain a subnet $(y_{k_n}^1)_n \subseteq (y_n^1)_n$ which converges weakly on the "direction" of $|T_1|$ (i.e. $(\tau(y_{k_n}^1a))_n$ converges for every $a \in E_1'$). This implies that $(y_{k_n}^1)_n$ converges weakly on the "direction" of $|T_1|$. In the same way we find a subnet $(y_{k_n}^2)_n \subseteq (y_{k_n}^1)_n$ which converges weakly on the "directions" of $|T_1|$ and $|T_2|$ and if we take the diagonal subnet we get in fact a subnet of $(y_n)_n$ which converges weakly on each "direction" $|T_1|, |T_2|, \ldots$ So, we can assume without loss of generality that $(y_n)_n$ itself has this property.

By the density of \mathcal{C} in the norm of $E(M,\tau)$ and (2.3), we can select a net $(T_{k_n})_n \subseteq \mathcal{C}$ with the properties

(2.4)
$$\int_{0}^{\infty} \mu_{t}(x_{n})\mu_{t}(T_{k_{n}})dt > 2\epsilon, \ n = 1, 2, ...,$$

and $||y_n - T_{k_n}||_{E(M,\tau)} \to 0$. Let us put $V_n := T_{k_n}, n \in \mathbb{N}$. Since (M,τ) is diffuse it follows from (2.4) and [FK] that there exists $z_n \in E'_{k_n} (:= \Psi_{k_n}(E'))$ with $\mu(z_n) = \mu(x_n)$ and

$$(2.5) |\tau(z_n V_n)| > 2\epsilon, \ n = 1, 2, \dots$$

In general, the map $f:(\Omega(x),\mu)\to\mathbb{C},\ f(z)=\tau(zy)$ is continuous for a fixed $y\in E(M,\tau)$ (cf. [DDP2]). But we know that $z_n\to 0(\mu)$ and that's why we can assume (tacking a subnet if necessary) that

$$|\tau(z_{n+1}V_n)| < \epsilon, \ n = 1, 2, \dots$$

Since $||y_n - V_n||_{E(M,\tau)} \to 0$ it follows that $(V_n)_n$ also converges on each "direction" of $|T_1|, |T_2|, \dots$ This means that if we let $w_n = V_n - V_{n-1}, n \in \mathbb{N}$, we have $\tau(w_n a) \to 0$ for every $a \in \bigcup E'_n$. Using (2.5) and (2.6) we obtain

$$|\tau(z_n w_n) > \epsilon, \ n = 1, 2,$$

Let $Z = \{z_n; n \in \mathbb{N}\} \bigcup \{0\}$. The space $(\Omega(x), \mu)$ is a complete metric space (cf. [DDP2]) and so, (Z, μ) is a complete metric subspace of $(\Omega(x), \mu)$. So, if we define now the functions

$$f_n:(Z,\mu)\to\mathbb{C},$$

$$f_n(z) = \tau(zw_n), z \in Z, n = 1, 2, ...,$$

we deduce that $(f_n)_n$ are continuous functions and $f_n(z) \to 0$ for every $z \in Z$. Using Baire's theorem we obtain $N \in \mathcal{V}(0)$ in (Z,μ) and $n_0 \in \mathbb{N}$ with the property $|\tau(zw_n)| \leq \frac{\epsilon}{2}$ for every $z \in N$ and $n \geq n_0$. But this implies that there exists $m_0 \in \mathbb{N}$ such that

(2.8)
$$|\tau(z_m w_n)| \le \frac{\epsilon}{2}, \ m \ge m_0, \ n \ge N_0$$

which contradicts (2.7). The case $\tau(1) < \infty$ is proved. The general situation when $\tau(1) = \infty$ can be "reduced" to the first one by standard arguments. We give a sketch of proof. Let again $F \in V_{\Lambda}^{\infty}(E(M,\tau))$. First, using lemma 2.1 (a) we remark (cf.

for instance [X2]) that we can assume without loss of generality that there exists a countable set of mutual disjoint projections $(P_n)_n \subseteq M$, $\tau(P_n) < \infty$, $n \in \mathbb{N}$, with $\sum_n P_n = 1$. We put $Q_n = P_1 + \ldots + P_n$, $n \in \mathbb{N}$. By the finite case, there exists $\phi_n \in L^\infty(E(Q_nMQ_n,\tau))$, $n \in \mathbb{N}$, with $Q_nFQ_n = \phi_n \cdot dm$, $n \in \mathbb{N}$. E has a.c. norm (cf. [LT]); thus it is not difficult to see that $Q_nF(A)Q_n \to F(A)$ in $E(M,\tau)$ for any $A \subseteq T$ and also $(\phi_n(t))_n$ is Cauchy in $E(M,\tau)$ a.e. $t \in T$. Let $\phi(t) = \lim_n \phi_n(t)$ a.e. $t \in T$. Since for every $A \subseteq T$ there exists $\lim_n \int_A \phi_n(t) dm(t) (= \lim_n Q_nF(A)Q_n = F(A))$ we deduce that ϕ is integrable (cf. [DU]) and moreover $F = \phi \cdot dm$ which completes the proof.

For $(M, \tau) = (B(H), tr)$ we get $E(M, \tau) = C_E$, the usual Schatten class, and we obtain the following consequences.

Corollary 2.3. We consider $\Lambda \subseteq \mathbb{Z}$. Then, E has Λ -RNP if and only if C_E has Λ -RNP.

Corollary 2.4 ([X1]). *E* has ARNP if and only if its non-commutative analogue $E(M, \tau)$ has ARNP.

Corollary 2.5 ([X2]). *E* has RNP if and only if its non-commutative analogue $E(M, \tau)$ has RNP.

In [BD] it is proved that any Banach lattice not containing c_0 has ARNP. The following corollary can be considered as a non-commutative version of this result.

Corollary 2.6. A non-commutative symmetric space $E(M,\tau)$ has ARNP if and only if it does not contain c_0 .

Proof. The first "implication" is obvious since c_0 does not have ARNP. For the converse, let us observe that E does not contain c_0 as well since it is isometric isomorphic with a subspace of $E(M,\tau)$. So, E has ARNP (cf. [BD]) and then, by corollary 2.4 $E(M,\tau)$ has ARNP.

3. Remarks

We want to point out here that the above results hold also in a more general context. For this, we have to recall the notion of Radon Nikodym Property associated with subsets of countable discrete abelian groups, introduced in [E] and [D]. Let G be a compact abelian metrizable group, Γ the dual group of G, $\mathcal{B}(G)$ the σ -algebra of Borel sets of G and λ the normalised Haar measure on G. We consider also G a Banach space. If G is a G-valued measure on G and G is defined by

$$\tilde{\mu}(\gamma) = \int_{G} \overline{\gamma(x)} d\mu(x).$$

If $\Lambda \subseteq \Gamma$ we denote as in [D] by $V_{\Lambda}^{\infty}(G,B)$ (resp. $V_{\Lambda,\mathrm{ac}}^{1}(G,B)$) the set of vector measure with bounded L^{∞} -variation such that $\tilde{\mu}(\gamma)=0$ for all $\gamma\in\Gamma\setminus\Lambda$ (resp. the set of vector measure with bounded variation, a.c. with λ and having the same property). Following [E] and [D] we recall that B is said to have I- Λ -RNP (resp. II- Λ -RNP) if and only if every measure from $V_{\Lambda}^{\infty}(G,B)$ (resp. $V_{\Lambda,\mathrm{ac}}^{1}$) is representable. With the same arguments as above, the following theorem can be proven.

Theorem 3.1. With the above notations, a rearrangement invariant space E has $I-\Lambda-RNP$ (resp. $II-\Lambda-RNP$) if and only if its non-commutative analogue $E(M,\tau)$ has $I-\Lambda-RNP$ (resp. $II-\Lambda-RNP$).

References

- [A] J.Arazy., Some remarks on interpolation theorems and the boundedness of triangular projection in unitary matrix spaces, Int. Eq. and Op. Theory 1/4 (1978). MR 81k:47056a
- [Bl] O.Blasco., Boundary values of functions in vector valued Hardy spaces and geometry of Banach spaces, J.Func.Anal. 78 (1988), 346-364. MR 89f:46080
- [BD] A.V.Buchvalov, A.A.Danilevich., Boundary properties of analytic and harmonic functions with values in Banach spaces, Mat.Zametki 31 (1982). MR 84f:46032
- [DU] J.Diestel, J.J.Uhl., Vector measure, Providence, (1977).
- [DDP1] P.G.Doods, T.K.Doods, B. de Pagter., Non-commutative Banach function spaces, Math. Z 201 (1989), 583-597. MR 90j:46054
- [DDP2] _____, Weakly compact subsets of symmetric operator spaces, Tech. rep., Delft University of Technology, (1990).
- [D] P.N.Dowling., Radon-Nikodym properties associated with subsets of countable discrete abelian groups, Trans.Amer.Math.Soc. 327 (1991), 879-890. MR 92a:46019
- [E] G.A.Edgar., Banach spaces with the analytic Radon Nikodym property and compact abelian groups, 1992.
- [FK] T.Fack, H. Kosaki., Generalised s-numbers of τ -measurable operators, Pacific J.Math. 123 (1986), 269-300. MR 87h:46122
- [HP] U.Haagerup, G.Pisier., Factorization of analytic functions with values in noncommutative L₁-spaces and applications, Canad.J.Math 41 (1989), 882-906. MR 91g:46068
- [LT] J.Lindenstrauss, L.Tzafiri., Classical Banach spaces, Springer-Verlag, 2 (1979). MR 81c:46001
- [M] C.Muscalu., New results on interpolation in non-commutative analysis., preprint, (1995).
- [N] E.Nelson., Notes on non-commutative integration., J.Func. Anal. 15 (1974), 103-116. MR 50:8102
- [SZ] S.Stratila, L.Zsido., Lectures on Von Neumann algebras., Abacus Press (1979). MR 81j:46089
- [X1] Q.Xu., Analytic functions with values in lattices and symmetric spaces of measurable operators., Math.Proc.Camb.Phil.Soc. 109 (1991), 541-563. MR 92g:46036
- [X2] Q.Xu., Radon Nikodym property in symmetric spaces of measurable operators, Proc. Amer. Math. Soc 115 (1992), 329-335. MR 92i:46074

Institute of Mathematics of the Romanian Academy, RO70700, PO Box 1-764, Bucharest, Romania

E-mail address: muscalu@stoilow.imar.ro

 ${\it Current\ address} \hbox{:}\ \ {\it Department\ of\ Mathematics,\ Brown\ University,\ Providence,\ Rhode\ Island\ 02912}$

 $E ext{-}mail\ address: camil@gauss.math.brown.edu}$