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RADIAL LIMIT OF LACUNARY FOURIER SERIES

WITH COEFFICIENTS

IN NON-COMMUTATIVE SYMMETRIC SPACES

CAMIL MUSCALU

(Communicated by Palle E. T. Jorgensen)

Abstract. Let E be a rearrangement invariant space, Λ ⊆ Z an arbitrary set
and (M, τ) a von Neumann algebra with a semifinite normal faithful trace. It is
proved that the associated symmetric space of measurable operators E(M, τ)
has Λ-RNP if and only if E has Λ-RNP extending in this way some previous
results by Q. Xu.

1. Introduction

The aim of the present note is to solve a problem concerning the Λ-Radon
Nikodym property (in short Λ-RNP) in symmetric spaces of measurable operators.
For stating our result we shall introduce first the necessary notations and definitions.
Let Λ ⊆ Z be an arbitrary set. A Banach space B is said to have Λ-RNP if and
only if every B-valued bounded lacunary Fourier series f(reit) =

∑
n∈Λ anr

|n|eint

on the unit disc D in the complex plane has radial limit at the boundary almost
everywhere. As was proved in the paper of Buchvalov and Danilevich [BD] we have
Z-RNP=RNP, the usual Radon Nikodym property and also N-RNP=ARNP, the
so-called analytic Radon Nikodym property. We consider now (M, τ) a semifinite
von Neumann algebra acting on a Hilbert space H, with a normal faithful trace τ .
Let M be the space of all measurable operators with respect to (M, τ) in the sense
of [N] equipped with the measure topology defined there. For a ∈M and t > 0 the
t-th singular number of a is defined by (cf. [FK])

µt(a) = inf{ ‖ae‖ ; e is a projection in M , τ(1− e) ≤ t }.
The function t → µt(a) will be denoted by µ(a). For the main properties of this
function the reader is referred to [FK]. Let also E be a rearrangement invariant (r.i.)
function space on (0,∞) (cf. [LT]). We define the non-commutative symmetric
space associated with (M, τ) and E as follows (cf. [DDP1]):

E(M, τ) = { a ∈M ; µ(a) ∈ E },

‖a‖E(M,τ) = ‖a‖E = ‖µ(a)‖E, a ∈ E(M, τ).

More exactly, we shall consider throughout this paper the following two cases in
order to preserve the main situations from the commutative case. If (M, τ) is
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diffuse (cf. [SZ]) then E is taken to be a r.i. space on [0, τ(1)) and when (M, τ) is
completely atomic with all the minimal projections of the same trace, E will be a
r.i. sequence space (cf. [LT]).

The problem we are mainly concerned here is if Λ-RNP for E is equivalent
with Λ-RNP for E(M, τ). Actually, in this paper we settle this question in the
affirmative. In the particular cases Λ = Z and Λ = N this study was done in [X2]
and [X1] respectively. In [X1] the author also considered some other cases such as
uniform convexity (see also [M]), uniform PL-convexity and uniform H-convexity.
Note however that such a result does not hold for AUMD property which does not
pass from E to E(M, τ) even in the particular case of the Schatten class (cf. [HP]).
Also there exists E1 isomorphic with E2 and such that E1(M, τ) is not equal with
E2(M, τ) (cf. [A] where such an example is given for M = B(H)). The arguments
from [X1, X2] do not seem to work in this more general case. Our solution is based
on some recent results of the author in [M] and also on a compactness theorem in
[DDP2].

2. The proof

Let T be the unit circle equipped with its normalised Haar measure dm. We
recall first that a vector measure F : (T, dm) → B has L∞-bounded variation (cf.
[DU]) if and only if there exists C > 0 such that ‖F (A)‖B ≤ C ·m(A) for every
measurable subset A of T. The smallest constant for which the inequality holds
is called the L∞-norm of F . For Λ ⊆ Z we shall denote by V∞Λ (B) the space
of all vector measures F with L∞-bounded variation and for which the Fourier
coefficients

F̂ (n) =

∫
e−intdm(t) = 0

for all n ∈ Z \ Λ. F is said to be representable if there exists f ∈ L∞(B) such
that F = f · dm. Also, we define H∞Λ (B) to be the Hardy space of all functions
f : D → B of the form f(reit) =

∑
n∈Λ anr

|n|eint endowed with the L∞-norm. For
proving our main result we need the next lemma which can be proved as in [Bl].

Lemma 2.1. Let Λ ⊆ Z and B be an arbitrary Banach space. Then,
(a) H∞Λ (B) = V∞Λ (B) via the Poisson integral.
(b) B has Λ-RNP iff every F ∈ V∞Λ (B) is representable.

We can present now the main theorem in this paper as follows.

Theorem 2.2. We consider Λ ⊆ Z as above. A rearrangement invariant space E
has Λ-RNP if and only if its non-commutative analogue E(M, τ) has Λ-RNP.

Proof. We shall give the proof in the “continuous case” when (M, τ) is diffuse. The
“discrete case” can be done in the same way with some minor natural changes.
Since E is isometric isomorphic with a closed subspace of E(M, τ) it is sufficient to
prove just “E has Λ-RNP⇒ E(M, τ) has Λ-RNP”. We can assume card Λ =∞ (if
not, all Banach spaces have Λ-RNP) and remark as in [BD] that E does not contain

any copy of c0. In particular the dual space E∗ is equal with the associate space E
′

(cf. [LT]). We consider first the situation τ(1) <∞ and we take F ∈ V∞Λ (E(M, τ)).
To settle our problem we have to show that F is representable (cf. lemma 2.1) or
more particular, ReF is representable (F = ReF+iImF ). Using a result from [DU]
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it is also sufficient to prove that for any A ⊆ T , m(A) 6= 0, there exists A0 ⊆ A,
m(A0) 6= 0 such that the set

A(A,A0) = { ReF (B)

m(B)
; B ⊆ A0, m(B) 6= 0 }(2.1)

is relatively weakly compact or, equivalently, relatively σ(E(M, τ), E
′
(M, τ)) com-

pact by a result from [DDP2]. Anyway, since (T, dm) is countable generated we
deduce (cf. [DU]) that the range of ReF is included into a separable subspace of
E(M, τ). By a density result in [M] this implies that there exists a countable set
C ⊆ E(M, τ) such that every T ∈ C is selfadjoint, has µ(T ) invertible and every

element in Sp(range(ReF )) can be approximated in the norm of E(M, τ) by a net
of measurable operators from C. Let’s say C = (Tn)n. For every n ∈ N there exists
(cf. [M]) a bounded linear map

Φn : E(M, τ)→ E

with Φn(|Tn|) = µ(Tn) and the norms of Φn do not depend on n ∈ N. Also, we
define as in [M]

Ψn : E → E(M, τ),

Ψn(f) = f ◦ µ−1(Tn)(|Tn|)

and recall (cf. [M]) that µ(Ψn(f)) = f∗, the usual nonincreasing rearrangement of
|f | (cf. [LT]). This means in particular that the space En = Ψn(E) ⊆ E(M, τ) is in
fact a “copy” of E which “stays” on the “direction” of |Tn|. After this preparation,
we can start the proof of (2.1). So, let’s fix A ⊆ T , m(A) 6= 0 and we want to
define A0. For this, we also consider n ∈ N and since En has Λ-RNP it follows (cf.
lemma 2.1) that the measure Ψn ◦Φn ◦ReF is representable. We obtain by a result
from [DU] that for every ε > 0 and every C ⊆ T , m(C) 6= 0 there exists C0 ⊆ C,
m(C0) 6= 0, m(C \C0) < ε, such that

An(C,C0) = { Ψn ◦ Φn ◦ReF (D)

m(D)
; D ⊆ C0,m(D) 6= 0 }(2.2)

is relatively norm compact in En. Now, it is obvious to choose a set A0 ⊆ A,
m(A0) 6= 0, with the property that for every n ∈ N the set An(A,A0) is relatively
norm compact in En. We will show that this A0 is a good set for our problem. To
see that A(A,A0) is relatively σ(E(M, τ), E

′
(M, τ)) compact is equivalent (using

a result from [DDP2] since τ(1) <∞) to proving the following assertion:

“For every x ∈ E
′
(M, τ) and (xn)n ⊆ Ω(x) := {z ;

∫ t
0 µs(z)ds ≤

∫ t
0 µs(x)ds}

with xn → x (µ) we have

sup{
∫ ∞

0

µt(xn)µt(y)dt ; y ∈ A(A,A0)} → 0.”

We assume that the above statement is false. This means that there exists x ∈
E
′
(M, τ), (xn)n ⊆ Ω(x), xn → 0(µ) and ε > 0, (yn)n ⊆ A(A,A0) such that∫ ∞

0

µt(xn)µt(yn)dt > 2ε, n = 1, 2, ....(2.3)
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Let yn = ReF (Bn)
m(Bn) , n ∈ N. Arguing as in [M] it is not difficult to see that there

exists (y1
n)n ⊆ E1 with τ(yna) = τ(y1

na) for every a ∈ E′1(= Ψ1(E
′
)), n ∈ N, and

µ(y1
n) = µ(

Ψ1 ◦Φ1 ◦ReF (Bn)

m(Bn)
), n ∈ N.

Using the same compactness result from [DDP2] (see the above “assertion”) to-
gether with (2.2) we obtain a subnet (y1

k1
n
)n ⊆ (y1

n)n which converges weakly on

the “direction” of |T1| (i.e. (τ(y1
k1
n
a))n converges for every a ∈ E′1). This implies

that (yk1
n
)n converges weakly on the “direction” of |T1|. In the same way we find

a subnet (yk2
n
)n ⊆ (yk1

n
)n which converges weakly on the “directions” of |T1| and

|T2| and if we take the diagonal subnet we get in fact a subnet of (yn)n which
converges weakly on each “direction” |T1|, |T2|, .... So, we can assume without loss
of generality that (yn)n itself has this property.

By the density of C in the norm of E(M, τ) and (2.3), we can select a net
(Tkn)n ⊆ C with the properties∫ ∞

0

µt(xn)µt(Tkn)dt > 2ε, n = 1, 2, ...,(2.4)

and ‖yn − Tkn‖E(M,τ) → 0. Let us put Vn := Tkn , n ∈ N. Since (M, τ) is diffuse it

follows from (2.4) and [FK] that there exists zn ∈ E
′

kn
(:= Ψkn(E

′
)) with µ(zn) =

µ(xn) and

|τ(znVn)| > 2ε, n = 1, 2, ....(2.5)

In general, the map f : (Ω(x), µ) → C, f(z) = τ(zy) is continuous for a fixed
y ∈ E(M, τ) (cf. [DDP2]). But we know that zn → 0(µ) and that’s why we can
assume (tacking a subnet if necessary) that

|τ(zn+1Vn)| < ε, n = 1, 2, ....(2.6)

Since ‖yn−Vn‖E(M,τ) → 0 it follows that (Vn)n also converges on each “direction” of
|T1|, |T2|, .... This means that if we let wn = Vn−Vn−1, n ∈ N, we have τ(wna)→ 0

for every a ∈
⋃
E
′

n. Using (2.5) and (2.6) we obtain

|τ(znwn) > ε, n = 1, 2, ....(2.7)

Let Z = {zn;n ∈ N}
⋃
{0}. The space (Ω(x), µ) is a complete metric space (cf.

[DDP2]) and so, (Z, µ) is a complete metric subspace of (Ω(x), µ). So, if we define
now the functions

fn : (Z, µ)→ C,

fn(z) = τ(zwn), z ∈ Z, n = 1, 2, ...,

we deduce that (fn)n are continuous functions and fn(z) → 0 for every z ∈ Z.
Using Baire’s theorem we obtain N ∈ V(0) in (Z, µ) and n0 ∈ N with the property
|τ(zwn)| ≤ ε

2 for every z ∈ N and n ≥ n0. But this implies that there exists m0 ∈ N
such that

|τ(zmwn)| ≤ ε

2
, m ≥ m0, n ≥ N0(2.8)

which contradicts (2.7). The case τ(1) <∞ is proved. The general situation when
τ(1) =∞ can be “reduced” to the first one by standard arguments. We give a sketch
of proof. Let again F ∈ V∞Λ (E(M, τ)). First, using lemma 2.1 (a) we remark (cf.
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for instance [X2]) that we can assume without loss of generality that there exists a
countable set of mutual disjoint projections (Pn)n ⊆ M , τ(Pn) < ∞, n ∈ N, with∑
n Pn = 1. We put Qn = P1 + ... + Pn, n ∈ N. By the finite case, there exists

φn ∈ L∞(E(QnMQn, τ)), n ∈ N, with QnFQn = φn · dm, n ∈ N. E has a.c. norm
(cf. [LT]); thus it is not difficult to see that QnF (A)Qn → F (A) in E(M, τ) for any
A ⊆ T and also (φn(t))n is Cauchy in E(M, τ) a.e. t ∈ T . Let φ(t) = limn φn(t) a.e.
t ∈ T . Since for every A ⊆ T there exists limn

∫
A φn(t)dm(t)(= limnQnF (A)Qn =

F (A)) we deduce that φ is integrable (cf. [DU]) and moreover F = φ · dm which
completes the proof.

For (M, τ) = (B(H), tr) we get E(M, τ) = CE , the usual Schatten class, and we
obtain the following consequences.

Corollary 2.3. We consider Λ ⊆ Z. Then, E has Λ-RNP if and only if CE has
Λ-RNP.

Corollary 2.4 ([X1]). E has ARNP if and only if its non-commutative analogue
E(M, τ) has ARNP.

Corollary 2.5 ([X2]). E has RNP if and only if its non-commutative analogue
E(M, τ) has RNP.

In [BD] it is proved that any Banach lattice not containing c0 has ARNP. The
following corollary can be considered as a non-commutative version of this result.

Corollary 2.6. A non-commutative symmetric space E(M, τ) has ARNP if and
only if it does not contain c0.

Proof. The first “implication” is obvious since c0 does not have ARNP. For the
converse, let us observe that E does not contain c0 as well since it is isometric
isomorphic with a subspace of E(M, τ). So, E has ARNP (cf. [BD]) and then, by
corollary 2.4 E(M, τ) has ARNP.

3. Remarks

We want to point out here that the above results hold also in a more general
context. For this, we have to recall the notion of Radon Nikodym Property associ-
ated with subsets of countable discrete abelian groups, introduced in [E] and [D].
Let G be a compact abelian metrizable group, Γ the dual group of G, B(G) the σ-
algebra of Borel sets of G and λ the normalised Haar measure on G. We consider
also B a Banach space. If µ is a B-valued measure on B(G) and γ ∈ Γ then the
Fourier coefficient µ̃(γ) is defined by

µ̃(γ) =

∫
G

γ(x)dµ(x).

If Λ ⊆ Γ we denote as in [D] by V∞Λ (G,B) (resp. V 1
Λ,ac(G,B)) the set of vector

measure with bounded L∞-variation such that µ̃(γ) = 0 for all γ ∈ Γ \ Λ (resp.
the set of vector measure with bounded variation, a.c. with λ and having the same
property). Following [E] and [D] we recall that B is said to have I-Λ-RNP (resp. II-
Λ-RNP) if and only if every measure from V∞Λ (G,B) (resp. V 1

Λ,ac) is representable.
With the same arguments as above, the following theorem can be proven.

Theorem 3.1. With the above notations, a rearrangement invariant space E has
I-Λ-RNP (resp. II-Λ-RNP) if and only if its non-commutative analogue E(M, τ)
has I-Λ-RNP (resp. II-Λ-RNP).
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