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ABSTRACT. Let R be a ring with involution and invertible 2, and let S be
the subring of R generated by the symmetric elements in R. The following
questions of Lanski are answered positively:

(i) Must S have Krull dimension when R does?

(i) Is every Artinian R-module Artinian as an S-module?

Throughout this paper R is a ring with involution * in which 2 is invertible. We
shall denote by S(R) the set of symmetric elements of R and by S(R) the subring
of R generated by S(R).

All modules in this paper are assumed to be unital left modules. Given a ring
A and an A-module M, the Krull dimension of M will be denoted by kr(M).

Chain conditions in rings with involution were studied in a number of papers (see,
for example, [2], [4], [8], [9], [10], [11]). In [10] Lanski conjectured that if R has
Krull dimension, then S(R) also must have Krull dimension. He raised implicitly
a more general question, namely whether every R-module with Krull dimension
has the same Krull dimension as an S(R)-module. He frankly admitted that he
did not know the answer even in the case of Artinian modules. In [2] the general
question was affirmatively answered in the case when R is Noetherian with respect
to two-sided *-ideals. The main aim of this paper is to prove the following:

A. Every Artinian R-module is Artinian as an S(R)-module.

B. If R is a ring with Krull dimension and M is an R-module, then kr(M) =

ks(ry(M).

The latter settles in particular Lanski’s conjecture above.

The idea of the proof is similar to that in [2]. However we now apply some
additional deep results and change the technique of the proof in some crucial points.

Note that if elements of S(R) commute, then S(R) = S(R). In [1] Amitsur
proved that if S(R) is a PI ring (e.g. if it is commutative), then so is R.

For every x-ideal I of R, R/I is a ring with involution in a natural way and
S(R/I) = (S(R) + I)/I. Indeed, if r+ I € S(R/I), then r* + I = r + I. Hence
r+I=(r+7r*)/2+1¢€ S(R)+ I. The other inclusion is clear.

An R-module M will be called x-faithful if for every non-zero x-ideal I of R,
IM #0.
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Note that if M is an R-module and T is the sum of all x-ideals of R annihilating
M, then M is a x-faithful (R/T)-module. Obviously the Krull dimensions of M
over R and over R/T coincide. We shall need the following

Proposition 1. If R is a PI ring having a *-faithful module M with Krull dimen-
sion, then the prime radical B(R) of R is nilpotent.

Proof. In [12] Markov proved that if a PI ring A has a faithful module with Krull
dimension, then 3(A) is nilpotent. Let a(M) = {r € R | rM = 0}. Obviously a(M)
is an ideal of R and M is a faithful R/a(M)-module with Krull dimension. Hence
by Markov’s theorem, 3(R/a(M)) is nilpotent. Clearly (B(R) + a(M))/a(M) C
B(R/a(M)). This implies that there exists an n such that (6(R))" C a(M), so
(B(R))"M = 0. However (B(R))™ is a *-ideal of R and M is a *-faithful R-module,
so (B(R))™ = 0. |

We shall also need the following general results which were proved in [2].

Proposition 2. Let S be a subring of a ring R and let I be an ideal of R such
that I C S. Suppose that every (R/I)-module has the same Krull dimension when
considered as an (R/I)-module and as an (S/I)-module. Then every R-module has
the same Krull dimension as an R-module and as an S-module.

Proposition 3. Let S be a subring of a ring A and I a nilpotent ideal of A. Then
k(g4 (M) = ks(M), for every (S + I)-module M.

§1. SOME REDUCTIONS
In this section we make some auxiliary reductions.

Proposition 4. Suppose that there exists an R-module M such that for some or-
dinal o, kr(M) = o but kg(gy(M) # . Then we can assume that S(R) = S(R) is
a central subring of R and R is a semiprime PI-ring.

Proof. By [6] (Proof of Lemma 1.3), the ideal I of R generated by {zy —yz | 2,y €
S(R)} is contained in S(R). Clearly, I is a *-ideal of R, so S(R/I) = (S(R)+1)/I =
S(R)/I. Applying Proposition 2 we can pass to the factor ring R/I and hence we
can assume that S(R) = S(R) is commutative. From the quoted Amitsur’s result it
follows that R is a PI ring. Factoring out the sum T of all *-ideals of R annihilating
M, we can assume that M is x-faithful. Now applying Proposition 1 we get that
B(R) is nilpotent. Hence Proposition 3 implies that k(g(ry+s(r)) (M) # a. Now
S(R/B(R)) = (S(R) + B(R))/B(R), so applying Proposition 2 we can factor out
B(R) and assume that R is semiprime. In [10], page 406, Lanski proved that
if S(R) is commutative, then for every s € S(R), the ideal of R generated by
{sr —rs | r € R} is nilpotent. This and semiprimeness of R imply that S(R) is
central. O

Proposition 5. Suppose that there exists an Artinian R-module which is not Ar-
tinian as an S(R)-module. Then we can assume that R is semiprime and S(R) =
S(R) is a central subring of R such that every 0 # s € S(R) is regular in R and
satisfies sM = M.

Proof. By Proposition 4 we can assume that S(R) = S(R) is a central subring of
R. Obviously we can assume that all proper submodules of M are Artinian as
S(R)-modules. These properties do not change when passing to the factor ring
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R/T, where T is the sum of all *-ideals of R annihilating M. Thus we can assume
that M is a x-faithful R-module. By Proposition 1, S(R) is nilpotent.

Since M is a *-faithful R-module and S(R) is a central subring of R, for every
s €8, a(s) ={me M| sm =0} is a proper R-submodule of M. Consequently
a(s) is an Artinian S(R)-module. The R-modules M/a(s) and sM are isomorphic,
so sM cannot be a proper submodule of M. Thus sM = M.

Now let I = {r € R | rs = 0}. Clearly, I is a *-ideal of R. Moreover IM =
I(sM) = (Is)M = 0. Since M is a #-faithful R-module, I = 0. This shows that s
is regular in R.

Since B(R) is nilpotent, S(R)M # M. Hence B(R)M, being a proper R-
submodule of M, is Artinian as an S(R)-module. Consequently M = M/B3(R)M
is an Artinian R/S(R)-module, which is not Artinian as an (S(R) + 8(R))/B(R) =
S(R/B(R))-module. Clearly, for every 0 # § = s + B(R) € S(R/B(R)), we have
5M = M. Moreover I = {r € R | rs € B(R)} is a xideal of R such that
I"s™ = (Is)™ = 0 for some n. Since s is regular in R, we have I™ = 0. This
shows that § is regular in R/B(R). Consequently we can replace R by R/B(R)
obtaining a ring with the desired properties. O

The following was proved in [2], Proposition 1.

Proposition 6. Let S be a subring of a ring A. Suppose there exist an ordinal
a # 0 and an A-module M such that ka(M) = « but ks(M) # «, and suppose
further that « is the least ordinal with this property. Then the module M contains
an R-submodule K such that ks(K) € « and, for every R-submodule N of K,
either ks(N) < a or ks(K/N) < a.

Now we shall prove

Proposition 7. Suppose that R has Krull dimension and that there exist an ordinal
a and R-module M with kr(M) = o and kgg) (M) # o. We can assume that

(i) R is a x-prime ring and S(R) = S(R) is a central subring of R;
(ii) for every 0 # c € S(R), ksry(M/cM) < a.

Proof. Suppose that we have chosen R with the least possible Krull dimension ~y
and then M an R-module with the least possible Krull dimension a. Observe that
~v > 0. Indeed, if v = 0, then R is an Artinian ring. Hence R is a Noetherian ring
and by [2], for every R-module M, kr(M) = kg(gy(M).

Note that all the reductions in Proposition 4 do not increase the Krull dimension
of the ring. Thus we can apply the proposition and assume that S(R) = S(R) is a
central subring of R. Moreover, since R has Krull dimension, §(R) is nilpotent (here
we could also apply arguments used in the proof of Proposition 5). Similarly as in
the proof of Proposition 4, applying Propositions 3 and 2, we can factor out 3(R)
and assume that R is a semiprime ring. Since R has Krull dimension, it has only
a finite number of minimal prime ideals ([5], Proposition 7.3). Note that if P is a
prime ideal of R, then PNP* is a *-prime ideal of R. Consequently there are %-prime
ideals Pi,...,P, of R such that P,N...NP, =0. Let M; = P,P,_1..Pi1M,1 <i<n.
Note that 0 = M,, C M,,_1 C ... C M; C My = M and all M; are R-submodules
of M. Hence for some 0 < ) <n-— 1, kS(R)(MZ/Mz+1) ﬁ a. Now Mi—l—l = Pi+1Mi,
80 ks(r)(Mi/Mit1) = K(S(Ry+Pis1)/Pips (Mi/Mit1) = ks(r/piyr)(Mi/Mit1). Obvi-
ously kg/p,,,(M;/M;y1) < o and S(R/Piy1) is a central subring of R/P;; . This
proves (i).
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Since R is *-prime and S(R) is central, each non-zero element ¢ € S(R) is reg-
ular in R. Hence the Krull dimension of R/cR is strictly smaller than . By the
choice of v, kr/er(M/cM) = kg(rjery(M/cM) = k(s(r)+cr)/cr(M/cM). Obvi-
ously krjcr(M/cM) = kr(M/cM) < a and, since S(R/cR) = (S(R) + cR)/cR,
krjecr(M/cM) = kgry(M/cM). Thus kggy(M/cM) < «. This implies that
ks(ry(cM) £ a. Hence by Proposition 6, we may assume that kg(p)(M/cM) < a.
The proof is complete. O

§2. MAIN RESULTS
We shall need the following results.

Proposition 8 ([14, Theorem 7.6]). Let o be an automorphism of order 2 of a
ring A with 1/2 € A and let A ={a € A | o(a) = a} be the fixed subring of A with
respect to o. Then ka(M) = kao (M) for every A-module M.

Proposition 9 ([7, Theorem 3.10]). Suppose that R is non-commutative and semi-
prime and S = S(R) is a field. Then
(i) S is the center of R;
(ii) R is a division ring with [R: S] =4 or R is isomorphic to the ring M2(S) of
2 x 2 - matrices over S.

Proposition 10 ([13, Theorem 1]. Suppose that K is a field of characteristic # 2
and x is a K-involution of the ring Ma(K). Then, in an appropriate K -basis, * is
one of the following types:

. . a b\~ a b
(transpose involution) <c d) = <c d)

or
(symplectic involution) (CCL Z) _ < d —b)

—c a
for all a,b,c,d in K.
In the former case, S(M2(K)) is not a subring of Ma(K).

Now we can prove

Theorem 1. Suppose that M is an R-module. Suppose further that
(i) R is semiprime, S = S(R) is a central subring of R and every non-zero
element of S is regular in R;
(i) kr(M) =« and for every 0 # s € S, ks(M/sM) < a.
Then ks(M) = a.

Proof. Suppose the theorem is not true and « is the least possible ordinal for which
it does not hold. Obviously @ > —1. By Proposition 6 we can assume that M is
an R-module such that kr(M) = a, ks(M) # « and for every R-submodule N of
M, ks(N) <aor ks(M/N) < a.

We claim that for every 0 # ¢ € S, kster(M) < «. If not, then there is a
strictly descending chain {M; | i = 0,1,2,...} of (S + cR)-submodules of M such
that My = M and for every i > 1, k(gqcry(Mi—1/M;) £ . This in particular
implies that for N = RM, kg(N) £ a. Since N is an R-submodule of M, the
assumption on M we made at the beginning of the proof gives that kg(M/N) < a.
Consequently kg(cM/cN) < «. By (ii), ks(M/cM) < «, so ks(M/cN) < «.
However ¢N = ¢cRM; C M, so ks(Mo/My) = ks(M/M;) < ks(M/cM) < o. This
contradiction proves the claim.
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If R is commutative, then * is an automorphism of R of order 2 the fixed ring
of which is equal S. We get a contradiction with Proposition 8. Thus R must be
non-commutative. We can form the ring Q@ = S~' R of quotients of R with respect
to the non-zero elements of S. The involution can be extended uniquely to @ and
then K = S(Q) is the field of fractions of the domain S. Now Propositions 9 and 10
allow us to assume that @ is the ring of 2 x 2 - matrices over K with the symplectic
involution or that @ is a division ring with center K and [Q : K] = 4.

We claim that there exists a skew-symmetric element € R such that z? # 0
and B = {z € Q | zz = zz} is equal to the K-subalgebra K[z] of @ generated
by x. Suppose first that @ is a division ring. Since 2 is invertible in R, for every
0#r e R\S, © =r—r*is a skew-symmetric element of R not belonging to
K. Obviously 2 # 0. Since 2> € K and z € K, dimg(K|[z]) = 2. Therefore
K|[z] is a maximal subfield of Q and K[z] = B. Suppose now that @ is the ring
of 2 x 2 - matrices over K with the symplectic involution. Then @ contains a set
E ={e;; | i,j = 1,2} of matrix units such that e, = —e12 and e5; = —eg;. Clearly
Yy = e12 + eo1 is a skew-symmetric invertible element of (). There exists 0 # s € S
such that z = sy € R. Obviously z is a skew-symmetric element of R and 2 # 0.
Direct computations show that B = K[x]. The claim is proved.

Let o be the inner automorphism of @ induced by z. Since x? € S is a central
element of R (and so of Q), 0? = idg. We also note that o commutes with
the involution. Observe that for s = 22, A = S + sR + xRx is a o-invariant
and x-invariant subring of R. We already know that ksisg(M) < «. Since the
lattice of A-submodules of M is a sublattice of the lattice of (S + sR)-submodules
of M, we conclude that k4(M) < «. By Proposition 8 we have that ks(M) =
kao(M). Clearly A C B ={z € Q| zx = xz} and so A7 is a commutative ring.
Recalling that ¢ commutes with *, we conclude that A? is a *-invariant subring of
R containing S. Therefore * induces an automorphism of order two on A?. Noting
that S(A%) = S and again applying Proposition 8, we infer that

ks(M) = ka- (M) = ka(M) < a.

Since the lattice of R-submodules of M is a sublattice of the lattice of S-submodules
of M, we conclude that kr(M) < kg(M). Thus kg(M) = a which contradicts our
assumption. The proof is complete. O

Theorem 1 and Proposition 5 give
Corollary 1. Every Artinian R-module is Artinian as an S(R)-module.
Applying Theorem 1 and Proposition 7 we get

Corollary 2. If R is a ring with Krull dimension and M is an R-module, then
kr(M) = kggy(M).

We close with a result which sheds some further light on Lanski’s general prob-
lem. Note that in particular it shows that the general question can be reduced to
the study of *-faithful modules over semiprime Goldie rings.

Theorem 2. Suppose that R contains an invertible skew-symmetric element x.
Then for every R-module M, kr(M) = kgg)(M).

Proof. Suppose that there exists an R-module M with kr(M) # kgg)(M). Ap-
plying Proposition 4 we can assume that R is a semiprime PI ring and S = S(R)
is a central subring of R. Factoring out the sum of all x-ideals of R annihilating
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M, we can assume that M is s-faithful. Now by Proposition 1 we get that S(R)
is nilpotent. Set I = B(R), I° = R, M, = I'M/I*"'M and N = @;_, M,, where
It = 0. We claim that N is a *-faithful R/I-module. Indeed, if .J is a *-ideal
of R such that (J/I)N = 0, then JI'M C I'*'M for t = 0,1,...,n. It follows
that J*T1M C I™*'M = 0. Hence, since M is s-faithful, J?T! = 0. Therefore
J = I, which proves the claim. Now passing to the ring R/I and the module N
and applying Propositions 2 and 3 we can assume that R is semiprime and M is
w-faithful. Let A = {r € R | rM = 0} be the annihilator of M. Clearly A is an
ideal of R and M is a faithful R/A-module. Hence by [12], the prime radical B/A of
R/A is nilpotent, i.e., B™"*! C A for a non-negative integer m. Similarly as above
one checks that N = @}, B‘M /Bt M is a faithful R/B-module. It is known [3]
that every semiprime PI ring having a faithful module with Krull dimension is a
(left and right) Goldie ring. Hence R/B is a Goldie ring. Note that since M is a
*-faithful R-module, A N A* = 0. Moreover (BN B*)™*1 C AN A* = 0. Hence
since R is semiprime, B N B* = 0. Now R/B* is antiisomorphic to R/B, so R/B*
is a Goldie ring. Since B is isomorphic to the ideal (B+ B*)/B* of R/B*, B is also
a Goldie ring. Let I = {r € R | rB = 0} be the annihilator of B in R. Since R is
semiprime, I N B = 0. Hence I is isomorphic to the ideal (I + B)/B of R/B, so I is
a Goldie ring. Finally I+ B = I ® B is a Goldie ring which is an essential ideal of R.
Hence R is a Goldie ring. Let T be the set of all regular elements in S. Note that if
c is a regular central element of R, then ¢* and cc* are regular central elements of R
and cc* € T. Hence regular central elements of R are invertible in the classical ring
of quotients @ = T~'R. Now by Proposition 5.8 in [15], Q is a semisimple Artinian
ring, so @ = @?:1 A;, where A; are simple rings. We can extend the involution
from R to @ putting (r/t)* =r*/t, forr € R, t € T. Then S(Q) = T~'S and hence
S(Q) is a central subring of ). Obviously for every 1 <i < n thereis 1 < j<mn
such that AY = A;. If i # j, then commutativity of S(Q) implies that both A; and
A; are fields. If ¢ = j, then by Propositions 9 and 10, A; is isomorphic to the ring
of 2 x 2-matrices over a field with the symplectic involution or it is a division ring
of dimension 4 over its center. In both cases S(A;) coincides with the center of A;.

Denote by o the inner automorphism of R induced by z. Since 22 € S is a central
element, 02 = idg. We claim that R is a commutative subring of R. Indeed, it
is enough to show that Q7 is a commutative subring of ). The foregoing show
that it suffices to prove the claim in the case when @ is the ring of 2 x 2-matrices
over a field with the symplectic involution or @ is a division ring of dimension 4
over its center. We can reduce the latter case to the former by tensoring @ by the
algebraic closure of its center. Thus we can assume that @ = Ms(F'), where F is an
algebraically closed field and S(Q) = F. Since 2% € F, we conclude that the Jordan
normal form of z is (§ °,) for some 0 # ¢ € F. It follows that Q7 is isomorphic to
a subring of the ring (5 2), which is obviously commutative. The claim is proved.
Note now that R” is a *-invariant subring of R and S = {r € R? | r* = r}. Clearly
x induces on R? an automorphism of order two. Applying twice Proposition 8 we
get that kr(M) = kg(M), a contradiction. The proof is complete. |
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