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KRULL DIMENSION OF MODULES
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(Communicated by Ken Goodearl)

Abstract. Let R be a ring with involution and invertible 2, and let S̄ be
the subring of R generated by the symmetric elements in R. The following
questions of Lanski are answered positively:

(i) Must S̄ have Krull dimension when R does?
(ii) Is every Artinian R-module Artinian as an S̄-module?

Throughout this paper R is a ring with involution ∗ in which 2 is invertible. We
shall denote by S(R) the set of symmetric elements of R and by S̄(R) the subring
of R generated by S(R).

All modules in this paper are assumed to be unital left modules. Given a ring
A and an A-module M , the Krull dimension of M will be denoted by kR(M).

Chain conditions in rings with involution were studied in a number of papers (see,
for example, [2], [4], [8], [9], [10], [11]). In [10] Lanski conjectured that if R has
Krull dimension, then S̄(R) also must have Krull dimension. He raised implicitly
a more general question, namely whether every R-module with Krull dimension
has the same Krull dimension as an S̄(R)-module. He frankly admitted that he
did not know the answer even in the case of Artinian modules. In [2] the general
question was affirmatively answered in the case when R is Noetherian with respect
to two-sided ∗-ideals. The main aim of this paper is to prove the following:

A. Every Artinian R-module is Artinian as an S̄(R)-module.
B. If R is a ring with Krull dimension and M is an R-module, then kR(M) =

kS̄(R)(M).

The latter settles in particular Lanski’s conjecture above.
The idea of the proof is similar to that in [2]. However we now apply some

additional deep results and change the technique of the proof in some crucial points.
Note that if elements of S(R) commute, then S(R) = S̄(R). In [1] Amitsur

proved that if S̄(R) is a PI ring (e.g. if it is commutative), then so is R.
For every ∗-ideal I of R, R/I is a ring with involution in a natural way and

S(R/I) = (S(R) + I)/I. Indeed, if r + I ∈ S(R/I), then r∗ + I = r + I. Hence
r + I = (r + r∗)/2 + I ∈ S(R) + I. The other inclusion is clear.

An R-module M will be called ∗-faithful if for every non-zero ∗-ideal I of R,
IM 6= 0.
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Note that if M is an R-module and T is the sum of all ∗-ideals of R annihilating
M , then M is a ∗-faithful (R/T )-module. Obviously the Krull dimensions of M
over R and over R/T coincide. We shall need the following

Proposition 1. If R is a PI ring having a ∗-faithful module M with Krull dimen-
sion, then the prime radical β(R) of R is nilpotent.

Proof. In [12] Markov proved that if a PI ring A has a faithful module with Krull
dimension, then β(A) is nilpotent. Let a(M) = {r ∈ R | rM = 0}. Obviously a(M)
is an ideal of R and M is a faithful R/a(M)-module with Krull dimension. Hence
by Markov’s theorem, β(R/a(M)) is nilpotent. Clearly (β(R) + a(M))/a(M) ⊆
β(R/a(M)). This implies that there exists an n such that (β(R))n ⊆ a(M), so
(β(R))nM = 0. However (β(R))n is a ∗-ideal of R and M is a ∗-faithful R-module,
so (β(R))n = 0.

We shall also need the following general results which were proved in [2].

Proposition 2. Let S be a subring of a ring R and let I be an ideal of R such
that I ⊆ S. Suppose that every (R/I)-module has the same Krull dimension when
considered as an (R/I)-module and as an (S/I)-module. Then every R-module has
the same Krull dimension as an R-module and as an S-module.

Proposition 3. Let S be a subring of a ring A and I a nilpotent ideal of A. Then
k(S+I)(M) = kS(M), for every (S + I)-module M .

§1. Some reductions

In this section we make some auxiliary reductions.

Proposition 4. Suppose that there exists an R-module M such that for some or-
dinal α, kR(M) = α but kS̄(R)(M) 6= α. Then we can assume that S̄(R) = S(R) is
a central subring of R and R is a semiprime PI-ring.

Proof. By [6] (Proof of Lemma 1.3), the ideal I of R generated by {xy− yx | x, y ∈
S̄(R)} is contained in S̄(R). Clearly, I is a ∗-ideal of R, so S(R/I) = (S(R)+I)/I =
S̄(R)/I. Applying Proposition 2 we can pass to the factor ring R/I and hence we
can assume that S(R) = S̄(R) is commutative. From the quoted Amitsur’s result it
follows that R is a PI ring. Factoring out the sum T of all ∗-ideals of R annihilating
M , we can assume that M is ∗-faithful. Now applying Proposition 1 we get that
β(R) is nilpotent. Hence Proposition 3 implies that k(S(R)+β(R))(M) 6= α. Now
S(R/β(R)) = (S(R) + β(R))/β(R), so applying Proposition 2 we can factor out
β(R) and assume that R is semiprime. In [10], page 406, Lanski proved that
if S(R) is commutative, then for every s ∈ S(R), the ideal of R generated by
{sr − rs | r ∈ R} is nilpotent. This and semiprimeness of R imply that S(R) is
central.

Proposition 5. Suppose that there exists an Artinian R-module which is not Ar-
tinian as an S̄(R)-module. Then we can assume that R is semiprime and S(R) =
S̄(R) is a central subring of R such that every 0 6= s ∈ S(R) is regular in R and
satisfies sM = M .

Proof. By Proposition 4 we can assume that S(R) = S̄(R) is a central subring of
R. Obviously we can assume that all proper submodules of M are Artinian as
S(R)-modules. These properties do not change when passing to the factor ring
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R/T , where T is the sum of all ∗-ideals of R annihilating M . Thus we can assume
that M is a ∗-faithful R-module. By Proposition 1, β(R) is nilpotent.

Since M is a ∗-faithful R-module and S(R) is a central subring of R, for every
s ∈ S, a(s) = {m ∈ M | sm = 0} is a proper R-submodule of M . Consequently
a(s) is an Artinian S(R)-module. The R-modules M/a(s) and sM are isomorphic,
so sM cannot be a proper submodule of M . Thus sM = M .

Now let I = {r ∈ R | rs = 0}. Clearly, I is a ∗-ideal of R. Moreover IM =
I(sM) = (Is)M = 0. Since M is a ∗-faithful R-module, I = 0. This shows that s
is regular in R.

Since β(R) is nilpotent, β(R)M 6= M . Hence β(R)M , being a proper R-
submodule of M , is Artinian as an S(R)-module. Consequently M̄ = M/β(R)M
is an Artinian R/β(R)-module, which is not Artinian as an (S(R) + β(R))/β(R) =
S(R/β(R))-module. Clearly, for every 0 6= s̄ = s + β(R) ∈ S(R/β(R)), we have
s̄M̄ = M̄ . Moreover I = {r ∈ R | rs ∈ β(R)} is a ∗-ideal of R such that
Insn = (Is)n = 0 for some n. Since s is regular in R, we have In = 0. This
shows that s̄ is regular in R/β(R). Consequently we can replace R by R/β(R)
obtaining a ring with the desired properties.

The following was proved in [2], Proposition 1.

Proposition 6. Let S be a subring of a ring A. Suppose there exist an ordinal
α 6= 0 and an A-module M such that kA(M) = α but kS(M) 6= α, and suppose
further that α is the least ordinal with this property. Then the module M contains
an R-submodule K such that kS(K) 6≤ α and, for every R-submodule N of K,
either kS(N) ≤ α or kS(K/N) < α.

Now we shall prove

Proposition 7. Suppose that R has Krull dimension and that there exist an ordinal
α and R-module M with kR(M) = α and kS̄(R)(M) 6= α. We can assume that

(i) R is a ∗-prime ring and S(R) = S̄(R) is a central subring of R;
(ii) for every 0 6= c ∈ S(R), kS(R)(M/cM) < α.

Proof. Suppose that we have chosen R with the least possible Krull dimension γ
and then M an R-module with the least possible Krull dimension α. Observe that
γ > 0. Indeed, if γ = 0, then R is an Artinian ring. Hence R is a Noetherian ring
and by [2], for every R-module M , kR(M) = kS̄(R)(M).

Note that all the reductions in Proposition 4 do not increase the Krull dimension
of the ring. Thus we can apply the proposition and assume that S(R) = S̄(R) is a
central subring of R. Moreover, sinceR has Krull dimension, β(R) is nilpotent (here
we could also apply arguments used in the proof of Proposition 5). Similarly as in
the proof of Proposition 4, applying Propositions 3 and 2, we can factor out β(R)
and assume that R is a semiprime ring. Since R has Krull dimension, it has only
a finite number of minimal prime ideals ([5], Proposition 7.3). Note that if P is a
prime ideal of R, then P∩P ∗ is a ∗-prime ideal of R. Consequently there are ∗-prime
ideals P1,...,Pn of R such that P1∩ ...∩Pn = 0. Let Mi = PiPi−1...P1M , 1 ≤ i ≤ n.
Note that 0 = Mn ⊆ Mn−1 ⊆ ... ⊆ M1 ⊆ M0 = M and all Mi are R-submodules
of M . Hence for some 0 ≤ i ≤ n− 1, kS(R)(Mi/Mi+1) 6≤ α. Now Mi+1 = Pi+1Mi,
so kS(R)(Mi/Mi+1) = k(S(R)+Pi+1)/Pi+1

(Mi/Mi+1) = kS(R/Pi+1)(Mi/Mi+1). Obvi-
ously kR/Pi+1

(Mi/Mi+1) ≤ α and S(R/Pi+1) is a central subring of R/Pi+1. This
proves (i).
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Since R is ∗-prime and S(R) is central, each non-zero element c ∈ S(R) is reg-
ular in R. Hence the Krull dimension of R/cR is strictly smaller than γ. By the
choice of γ, kR/cR(M/cM) = kS(R/cR)(M/cM) = k(S(R)+cR)/cR(M/cM). Obvi-
ously kR/cR(M/cM) = kR(M/cM) ≤ α and, since S(R/cR) = (S(R) + cR)/cR,
kR/cR(M/cM) = kS(R)(M/cM). Thus kS(R)(M/cM) ≤ α. This implies that
kS(R)(cM) 6≤ α. Hence by Proposition 6, we may assume that kS(R)(M/cM) < α.
The proof is complete.

§2. Main results

We shall need the following results.

Proposition 8 ([14, Theorem 7.6]). Let σ be an automorphism of order 2 of a
ring A with 1/2 ∈ A and let Aσ = {a ∈ A | σ(a) = a} be the fixed subring of A with
respect to σ. Then kA(M) = kAσ (M) for every A-module M .

Proposition 9 ([7, Theorem 3.10]). Suppose that R is non-commutative and semi-
prime and S = S(R) is a field. Then

(i) S is the center of R;
(ii) R is a division ring with [R : S] = 4 or R is isomorphic to the ring M2(S) of

2× 2 - matrices over S.

Proposition 10 ([13, Theorem 1]. Suppose that K is a field of characteristic 6= 2
and ∗ is a K-involution of the ring M2(K). Then, in an appropriate K-basis, ∗ is
one of the following types:

(transpose involution)

(
a b
c d

)∗
=

(
a b
c d

)
or

(symplectic involution)

(
a b
c d

)
=

(
d −b
−c a

)
for all a, b, c, d in K.

In the former case, S(M2(K)) is not a subring of M2(K).

Now we can prove

Theorem 1. Suppose that M is an R-module. Suppose further that

(i) R is semiprime, S = S(R) is a central subring of R and every non-zero
element of S is regular in R;

(ii) kR(M) = α and for every 0 6= s ∈ S, kS(M/sM) < α.

Then kS(M) = α.

Proof. Suppose the theorem is not true and α is the least possible ordinal for which
it does not hold. Obviously α > −1. By Proposition 6 we can assume that M is
an R-module such that kR(M) = α, kS(M) 6= α and for every R-submodule N of
M , kS(N) ≤ α or kS(M/N) < α.

We claim that for every 0 6= c ∈ S, kS+cR(M) ≤ α. If not, then there is a
strictly descending chain {Mi | i = 0, 1, 2, ...} of (S + cR)-submodules of M such
that M0 = M and for every i ≥ 1, k(S+cR)(Mi−1/Mi) 6< α. This in particular
implies that for N = RM1, kS(N) 6≤ α. Since N is an R-submodule of M , the
assumption on M we made at the beginning of the proof gives that kS(M/N) < α.
Consequently kS(cM/cN) < α. By (ii), kS(M/cM) < α, so kS(M/cN) < α.
However cN = cRM1 ⊆M1, so kS(M0/M1) = kS(M/M1) ≤ kS(M/cM) < α. This
contradiction proves the claim.



KRULL DIMENSION 359

If R is commutative, then ∗ is an automorphism of R of order 2 the fixed ring
of which is equal S. We get a contradiction with Proposition 8. Thus R must be
non-commutative. We can form the ring Q = S−1R of quotients of R with respect
to the non-zero elements of S. The involution can be extended uniquely to Q and
then K = S(Q) is the field of fractions of the domain S. Now Propositions 9 and 10
allow us to assume that Q is the ring of 2×2 - matrices over K with the symplectic
involution or that Q is a division ring with center K and [Q : K] = 4.

We claim that there exists a skew-symmetric element x ∈ R such that x2 6= 0
and B = {z ∈ Q | zx = xz} is equal to the K-subalgebra K[x] of Q generated
by x. Suppose first that Q is a division ring. Since 2 is invertible in R, for every
0 6= r ∈ R \ S, x = r − r∗ is a skew-symmetric element of R not belonging to
K. Obviously x2 6= 0. Since x2 ∈ K and x 6∈ K, dimK(K[x]) = 2. Therefore
K[x] is a maximal subfield of Q and K[x] = B. Suppose now that Q is the ring
of 2× 2 - matrices over K with the symplectic involution. Then Q contains a set
E = {eij | i, j = 1, 2} of matrix units such that e∗12 = −e12 and e∗21 = −e21. Clearly
y = e12 + e21 is a skew-symmetric invertible element of Q. There exists 0 6= s ∈ S
such that x = sy ∈ R. Obviously x is a skew-symmetric element of R and x2 6= 0.
Direct computations show that B = K[x]. The claim is proved.

Let σ be the inner automorphism of Q induced by x. Since x2 ∈ S is a central
element of R (and so of Q), σ2 = idQ. We also note that σ commutes with
the involution. Observe that for s = x2, A = S + sR + xRx is a σ-invariant
and ∗-invariant subring of R. We already know that kS+sR(M) ≤ α. Since the
lattice of A-submodules of M is a sublattice of the lattice of (S + sR)-submodules
of M , we conclude that kA(M) ≤ α. By Proposition 8 we have that kA(M) =
kAσ(M). Clearly Aσ ⊆ B = {z ∈ Q | zx = xz} and so Aσ is a commutative ring.
Recalling that σ commutes with ∗, we conclude that Aσ is a ∗-invariant subring of
R containing S. Therefore ∗ induces an automorphism of order two on Aσ. Noting
that S(Aσ) = S and again applying Proposition 8, we infer that

kS(M) = kAσ (M) = kA(M) ≤ α.
Since the lattice of R-submodules of M is a sublattice of the lattice of S-submodules
of M , we conclude that kR(M) ≤ kS(M). Thus kS(M) = α which contradicts our
assumption. The proof is complete.

Theorem 1 and Proposition 5 give

Corollary 1. Every Artinian R-module is Artinian as an S̄(R)-module.

Applying Theorem 1 and Proposition 7 we get

Corollary 2. If R is a ring with Krull dimension and M is an R-module, then
kR(M) = kS̄(R)(M).

We close with a result which sheds some further light on Lanski’s general prob-
lem. Note that in particular it shows that the general question can be reduced to
the study of ∗-faithful modules over semiprime Goldie rings.

Theorem 2. Suppose that R contains an invertible skew-symmetric element x.
Then for every R-module M , kR(M) = kS̄(R)(M).

Proof. Suppose that there exists an R-module M with kR(M) 6= kS̄(R)(M). Ap-

plying Proposition 4 we can assume that R is a semiprime PI ring and S = S̄(R)
is a central subring of R. Factoring out the sum of all ∗-ideals of R annihilating
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M , we can assume that M is ∗-faithful. Now by Proposition 1 we get that β(R)
is nilpotent. Set I = β(R), I0 = R, Mt = ItM/It+1M and N =

⊕n
t=0Mt, where

In+1 = 0. We claim that N is a ∗-faithful R/I-module. Indeed, if J is a ∗-ideal
of R such that (J/I)N = 0, then JItM ⊆ It+1M for t = 0, 1, ..., n. It follows
that Jn+1M ⊆ In+1M = 0. Hence, since M is ∗-faithful, Jn+1 = 0. Therefore
J = I, which proves the claim. Now passing to the ring R/I and the module N
and applying Propositions 2 and 3 we can assume that R is semiprime and M is
∗-faithful. Let A = {r ∈ R | rM = 0} be the annihilator of M . Clearly A is an
ideal of R and M is a faithful R/A-module. Hence by [12], the prime radical B/A of
R/A is nilpotent, i.e., Bm+1 ⊆ A for a non-negative integer m. Similarly as above
one checks that N =

⊕m
t=0 B

tM/Bt+1M is a faithful R/B-module. It is known [3]
that every semiprime PI ring having a faithful module with Krull dimension is a
(left and right) Goldie ring. Hence R/B is a Goldie ring. Note that since M is a
∗-faithful R-module, A ∩ A∗ = 0. Moreover (B ∩ B∗)m+1 ⊆ A ∩ A∗ = 0. Hence
since R is semiprime, B ∩B∗ = 0. Now R/B∗ is antiisomorphic to R/B, so R/B∗

is a Goldie ring. Since B is isomorphic to the ideal (B+B∗)/B∗ of R/B∗, B is also
a Goldie ring. Let I = {r ∈ R | rB = 0} be the annihilator of B in R. Since R is
semiprime, I ∩B = 0. Hence I is isomorphic to the ideal (I+B)/B of R/B, so I is
a Goldie ring. Finally I+B = I⊕B is a Goldie ring which is an essential ideal of R.
Hence R is a Goldie ring. Let T be the set of all regular elements in S. Note that if
c is a regular central element of R, then c∗ and cc∗ are regular central elements of R
and cc∗ ∈ T . Hence regular central elements of R are invertible in the classical ring
of quotients Q = T−1R. Now by Proposition 5.8 in [15], Q is a semisimple Artinian
ring, so Q =

⊕n
i=1 Ai, where Ai are simple rings. We can extend the involution

from R to Q putting (r/t)∗ = r∗/t, for r ∈ R, t ∈ T . Then S(Q) = T−1S and hence
S(Q) is a central subring of Q. Obviously for every 1 ≤ i ≤ n there is 1 ≤ j ≤ n
such that A∗i = Aj . If i 6= j, then commutativity of S(Q) implies that both Ai and
Aj are fields. If i = j, then by Propositions 9 and 10, Ai is isomorphic to the ring
of 2× 2-matrices over a field with the symplectic involution or it is a division ring
of dimension 4 over its center. In both cases S(Ai) coincides with the center of Ai.

Denote by σ the inner automorphism of R induced by x. Since x2 ∈ S is a central
element, σ2 = idR. We claim that Rσ is a commutative subring of R. Indeed, it
is enough to show that Qσ is a commutative subring of Q. The foregoing show
that it suffices to prove the claim in the case when Q is the ring of 2× 2-matrices
over a field with the symplectic involution or Q is a division ring of dimension 4
over its center. We can reduce the latter case to the former by tensoring Q by the
algebraic closure of its center. Thus we can assume that Q = M2(F ), where F is an
algebraically closed field and S(Q) = F . Since x2 ∈ F , we conclude that the Jordan
normal form of x is (c 0

0 −c) for some 0 6= c ∈ F . It follows that Qσ is isomorphic to

a subring of the ring (F 0
0 F ), which is obviously commutative. The claim is proved.

Note now that Rσ is a ∗-invariant subring of R and S = {r ∈ Rσ | r∗ = r}. Clearly
∗ induces on Rσ an automorphism of order two. Applying twice Proposition 8 we
get that kR(M) = kS(M), a contradiction. The proof is complete.

References

1. S.A. Amitsur, Rings with involution, Israel J. Math. 6 (1968), 99–106. MR 39:256
2. K.I. Beidar, E.R. Puczy lowski and P.F. Smith, Krull dimension of modules over involution

rings, Proc. Amer. Math. Soc. 121 (1994), 391–397. MR 94h:16064



KRULL DIMENSION 361

3. K.I. Beidar and V.T. Markov, A semiprime PI-ring having a faithful module with Krull
dimension is a Goldie ring, Russian Math. Survey 48 (1993), 141–142. MR 94m:16023

4. C.L. Chuang and P.H. Lee, Noetherian rings with involution, Chinese J. Math. 5 (1977),
15–19. MR 56:12053

5. R. Gordon and J.C. Robson, Krull dimension, Memoirs Amer. Math. Soc., No. 133, American
Mathematical Society, Providence, 1973. MR 50:4664

6. I.N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago, 1969. MR 42:6018
7. C. Lanski, On the relationship of a ring and the subring generated by its symmetric elements,

Pacific J. Math. 44 (1973), 581–592. MR 48:331
8. C. Lanski, Chain conditions in rings with involution, J. London Math. Soc. 9 (1974), 93–102.

MR 50:13123
9. C. Lanski, Chain conditions in rings with involution II, J. London Math. Soc. 18 (1978),

421–428. MR 80a:16024
10. C. Lanski, Gabriel dimension and rings with involution, Houston Math. J. 4 (1978), 397–415.

MR 80a:16025
11. P.H. Lee On subrings of rings with involution, Pacific J. Math. 60 (1975), 131–147. MR

53:519
12. V.T. Markov, On PI rings having a faithful module with Krull dimension (to appear).
13. S. Montgomery, A structure theorem and a positive-definiteness condition in rings with invo-

lution, J. Algebra 43 (1976), 181–192. MR 54:12821
14. S. Montgomery, Fixed rings of finite automorphism groups of associative rings, Lectures Notes

in Math. Vol. 818, Springer-Verlag, Berlin-Heidelberg-New York, 1980. MR 81j:16041
15. L.H. Rowen, On rings with central polynomials, J. Algebra 31 (1974), 393–426. MR 50:2237

Department of Mathematics, Moscow State University, Moscow, Russia

Current address: National Cheng–Kung University, Department of Mathematics, Tainan, Tai-
wan

E-mail address: t14270@sparc1.cc.ncku.edu.tw

Institute of Mathematics, University of Warsaw, Warsaw, Poland

E-mail address: edmundp@mimuw.edu.pl

Department of Mathematics, University of Glasgow, Glasgow, Scotland

E-mail address: pfs@maths.gla.ac.uk


