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ABSTRACT. We present a new formula relating the normal Euler numbers of
embedded surfaces in 4-space and the number of triple points on their pro-
jections into 3-space. This formula generalizes Banchoff’s formula between
normal Euler numbers and branch points on the projections.

1. INTRODUCTION

A formula between normal Euler numbers of embedded surfaces in 4-space and
the number of branch points on their projections into 3-space was discovered by
Banchoff [1] (see also [2]). In this paper we generalize his formula including the
number of triple points on projections. For the rest of the paper the term knotted
surfaces refers to smoothly embedded closed surfaces in four-dimensional Euclidean
space. We use the term knotted surfaces since the phenomena of knottings occur
for codimension 2 embeddings, and the results of the present paper arose from our
studies in knot theory in 4-space [2, 3].

The normal Euler number is calculated as follows [2]. Let F be a knotted surface
in 4-space. Let F} be a transverse push-off of F'. Thus F' N F; consists of isolated
transverse double intersection points. At each point of F' N F; , choose a local
orientation of F' and an induced orientation of Fy. The local intersection number
between these surfaces is computed by comparing the orientation of the two inter-
secting surfaces with a fixed orientation of R*. If the orientations agree (resp. do
not agree), then the point contributes +1 (resp. —1) to the normal Euler number.
Thus the normal Euler number e(F’) is the sum of these intersection numbers taken
over all the points of F' N F; . The normal Euler number is, in fact, a characteristic
class of the normal bundle of the embedding of the surface in 4-space.

Banchoff’s formula relates the normal Euler numbers to branch points on the
projections. A generic projection of a knotted surface in 4-space into 3-space con-
sists of neighborhoods of (1) embedded points, (2) double point arcs, (3) isolated
triple points, and (4) branch points [5, 2, 3]. The double point curve (resp. a triple
point, a branch point) are depicted in the left of Figure 1 (A) (resp. (B), (C)).
If F is a knotted surface, then it can be assumed without loss of generality that
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FIGURE 1. Projections and broken diagrams of knotted surfaces

the image p(F) under the projection p : R* — R? into a 3-dimensional subspace
is such a generic surface. Furthermore, along double point curves along which two
sheets intersect, there is crossing information; namely which of the two sheets along
a double curve is closer to the hyperplane of projection than the other. We use
broken surface diagrams to indicate the crossing information [3]. Specifically, we
break the neighborhood of the double point set of the sheet which lies further away
from the projectional hyperplane than the other sheet. Such diagrams are depicted
in the right of Figure 1.

Let us review Banchoff’s formula. We refer to [1, 2] for more details. If a
projection of a knotted surface is an immersion ( i.e., without branch points,)
then it can be pushed off of itself in the projection direction to get a disjoint copy
Fy. In general this can be done for any projection except near neighborhoods
of isolated branch points. At a branch point, such a disjoint push off can be
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extended to a transverse push off so that it has a transverse double intersection
point in the neighborhood of the preimage of a branch point. Thus each branch
point contributes £1 to the normal Euler number. The sign is determined by the
crossing information near each branch point. We fix a convention that the crossing
information depicted in the right of Figure 1 (C) receives a negative sign, and the
mirror image of this Figure receives a positive sign.

In this paper we relate the normal Euler numbers to the number of signed triple
points. A generic projection divides 3-space into regions. Thus we can give a
checker-board colorings (black and white) to the regions so that the adjacent regions
receive the opposite colors. We use the checker-board coloring of the regions divided
by a generic projection to define the signs of triple points.

In Section 2, we define the signs of triple points and branch points of projections
using such colorings together with the crossing information. In Section 3, we state
our formula and give a proof. Our proof is similar to the one we used to prove
Whitney’s congruence between normal Euler numbers and the genus of embedded
surfaces in [2].

We remark here that the idea behind Banchoff’s formula is a duality between
characteristic classes and singularities of generic maps [6]. Such a duality is proved
for normal Euler classes for embedded 3-manifolds in 5-space in [4]. Our formula in
this paper suggests such a duality involving both singularities and multiple point
sets.

2. SIGNS FOR TRIPLE POINTS AND BRANCH POINTS

In this section, signs for triple points and branch points on the projections of
knotted surfaces are defined using checker-board colorings.

Let F be a knotted surface in 4-space and p(F) its generic projection where
p: R* — R3 is the projection map.

There is a checker-board coloring for the domains divided by p(F') such that
each domain is colored either black or white and adjacent regions (that is, regions
sharing the same face) have different colorings. Fix such a coloring.

First we define signs for triple points. There are eight regions near a triple
point. Pick a black region, B, among four of them. Let v, ¢ and 3 be the normal
vectors of three sheets in B pointing into B. Recall that these sheets are disjointly
embedded in 4-space as the top, middle, and bottom sheets. Choose ¥, > and 3
to be the normals to the top, middle, and bottom sheets, respectively. Thus the
vectors vy, v, and v are the normal vectors such that (1) they are normal to the
top, middle, and bottom sheets respectively, and (2) they lie in B pointing into
B. See Figure 2. Define the triple point to be positive if the orientation of 3-space
defined by the ordered triple (¢, U2, ¥3) matches the originally fixed orientation of
the 3-space, and negative otherwise. Figure 2 depicts such vectors and checker-
board coloring at the neighborhood of a triple point. In the right hand convention
this is a negative triple point. This definition depends upon the fixed orientation of
the 3-space and the coloring, but it does not depend upon the choice of the black
region. Let B’ be another black region. Then exactly two of the normal vectors
change their directions and the other one does not. Hence the orientation defined
by the new normals with respect to B’ is the same as the old one. Thus each triple
point has a well-defined sign.
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FI1GURE 2. Normal vectors and checker-board coloring

Next we consider the branch points. Recall that the signs of branch points
are defined by Banchoff [1], where the connection to the normal Euler numbers
is studied, and are also used in [2]. Such signs were defined using the crossing
information near each branch point on projections of knotted surfaces. The index
of the branch points was defined and used by Coghlan [7] to generalize Banchoff’s
formula. Such an index is also considered by Sziics [8]. Here, following Coghlan,
we define the color of branch points.

In the neighborhood of a branch point p(F) looks like the cone on the figure
eight. Thus the checker-board coloring gives either black or white inside this figure
eight. We call the former a black branch point and the latter a white branch point.

We use the following notation: 7T (resp. 7T-) = the number of the positive
(resp. negative) triple points, B4 (resp. B_) = the number of the positive (resp.
negative) black branch points, W, (resp. W_) = the number of the positive (resp.
negative) white branch points.

Further define the following numbers: T'=T, —T_, B= B, — B_ and W =
W, —W_.

In the next section we present a new formula involving these numbers and the
normal Euler numbers.

3. A NEW FORMULA FOR NORMAL EULER NUMBERS

Denote by e(F') the normal Euler number of F. Banchoff [1] proved that e(F') is
equal to the number of positive branch points on a generic projection p(F') minus
the number of negative branch points. In this section we prove our main result
generalizing his formula:

Theorem 3.1.
T+ W+42B=(3/2)e(F).

Proof. Figure 3 illustrates the fact that a triple point is replaced by a pair of branch
points by adding a 1-handle. In fact this smoothing is realized as a 1-handle addition
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FIGURE 3. Smoothing a triple point

in 4-space so that the resulting surface is a projection of a new embedded surface
in 4-space [2].

More specifically, the three sheets of surface that intersect at a triple point can
be labeled top, middle, and bottom, and these indicate the relative position of the
surfaces with respect to the projection direction. In order to be realized as an
embedded surface, a hollow 1-handle is attached between the top and middle or
between the middle and bottom sheet. If we perform this smoothing at a triple
point on a projection of a knotted surface F', then we obtain a new knotted surface
F’ such that (1) F’ is obtained by adding a 1-handle to F, and (2) the projection
F’ coincides with the projection p(F') except in the neighborhood of the triple point
and the smoothing described above is performed in this neighborhood.

We compute the changes of the numbers of signed triple points and branch points
by this smoothing. Since a triple point is replaced by a pair of branch points by
the smoothing, we have the following cases of changes among signed triple points
and branch points:

(a) A replacement of { a positive triple point } by { a pair of a negative white
branch point and a positive black branch point }.

(b) A replacement of { a negative triple point } by { a pair of a positive white
branch point and a negative black branch point }.

Whence the integer

T+W+2B

does not change by this smoothing ( i. e., this integer for F and that of F’
coincide).

Notice here that the normal Euler number does not change by 1-handle additions:
e(F) =e(F").

Now to a given projection p(F') of a knotted surface F', perform the triple point
smoothings at all the triple points. Such smoothings do not affect the integer
T+ W +2B.

After triple point smoothings, we may have double loops (closed circles) of double
points. For such a loop, perform the same smoothing as described above to get an
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arc of double points. (Simply ignore the horizontal sheet in Figure 3 in this case.)
Then we obtain a pair of branch points of the same color and opposite signs. Note
that this smoothing is also realized by a 1-handle addition to obtain a new knotted
surface with the same normal Euler number.

Thus after these smoothings we obtain a new surface such that both the integer
T 4+ W + 2B and the normal Euler number are the same as those of the original
surface. The new surface has a projection only with double point arcs.

There are two types of double point arcs: the neighborhood is homeomorphic to
(1) an annulus (called an a-arc), or (2) a Mobius band (called an m-arc).

The ends of an a-arc have opposite signs and the same color. Neither T4+W +2B
nor e(F') changes when the a-arcs are replaced with disks. Let F”' denote the surface
that results and that has only m-arcs.

The ends of an m-arc have the same sign and opposite colors. Call an m-arc
positive if it terminates with both positive points, or negative if it terminates with
negative points. Let p denote the number of positive m-arcs and n denote the
number of negative m-arcs. Then e(F”) = 2(p — n).

If a positive m-arc is replaced by a disk W + 2B changes to W + 2B — 3. If a
negative m-arc is replaced by a disk W 4 2B changes to W + 2B + 3. After all the
m-arcs are removed, W 4 2B = 0. So originally, W 4+ 2B = 3(p — n). The theorem
follows. O

Corollary 3.2. If F is an oriented embedded surface in 4-space, then T'(F) = 0.

Remark 3.3. This remark is due to Prof. Murasugi. If the checker-board coloring
is changed, then the signs of the triple points change. The colors of the branch
points also change. Thus the formula

—T + B+ 2W = (3/2)e(F)
also holds. Banchoff’s formula,
B+ W =e(F),
is recovered by adding these two together. Alternately, we get
W—-T=T+B=(1/2)e(F),
and
T=(1/2)(W — B).
Remark 3.4. If we choose the white regions to determine the signs of triple points,

or if we change the sign convention for branch points (but not both), then the dual
formula T 4+ 2W + B = (3/2)e(F) holds, and similar consequences can be drawn.
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