CONGRUENCES ON "CHARACTER" VALUES OF PERMUTATION SUMMANDS

XIANGYONG WANG

(Communicated by Ronald M. Solomon)

ABSTRACT. A class of congruences on "character" values Φ_L of a permutation summand L are exhibited, from which follows the connectedness of the prime ideal spectrum of the Grothendieck ring of permutation summands.

Let G be a finite group and A the ring of integers in a number field K. An AG-lattice is called a permutation lattice if it has an A-basis, necessarily finite, which is permuted by the action of G. It will be called a permutation summand (for G over A), if it is a direct summand, as AG-module, of a permutation lattice. The Grothendieck ring $\Omega_A(G)$ of the category of all permutation summands for G over A has been studied in [3], via a sort of numerical character Φ_L of a permutation summand L. The construction of Φ_L is reviewed in the first paragraph of the proof below.

In this note we exhibit a class of congruences on the values of Φ_L which are strong enough to imply the connectedness of the prime ideal spectrum of $\Omega_A(G)$. The corresponding result for the character ring $R_K(G)$ was established in [2], where Lemma 7 gives analogous congruences on character values. For the Burnside ring $\Omega(G)$ of finite G-sets, the connectedness fails [1], because there are too few congruences on the number of fixed points of G-sets.

The function Φ_L takes values in the ring A' of integers of some sufficiently large number field, for instance $K(\zeta_{|G|})$, and is defined on triples (H, b, \mathfrak{p}') of G over A. Here \mathfrak{p}' is a non-zero prime ideal of A' so that if p is the unique prime number in \mathfrak{p}' then H is a p-hypoelementary subgroup of G and b is a generator of $H/O_p(H)$ where $O_p(H)$ is the largest normal p-subgroup of H.

Congruences. For any prime number q, we have

$$\Phi_L(H, b, \mathfrak{p}') \equiv \Phi_L(O^q(H), b_{q'}, \mathfrak{p}') \mod \mathfrak{q}'$$

where $O^q(H)$ is the smallest normal subgroup of H with $H/O^q(H)$ a q-group, $b_{q'}$ is the q'-part of the element b, and \mathfrak{q}' is any prime ideal above q.

Proof. Notations are consistent with those used in [3]. Let $i_{\mathfrak{p}'}:A'\to A'_{\mathfrak{p}'}$ be the inclusion of A' in its completion at \mathfrak{p}' , and let $\mathfrak{p}=\mathfrak{p}'\cap A$. Denote the $A_{\mathfrak{p}}G$ -module $A_{\mathfrak{p}}\otimes_A L$ by M for simplicity. Since H is p-hypoelementary, $O_p(H)$ is the normal p-Sylow subgroup of H. Decompose the restriction M_H of M to H as $M_H \simeq M' \oplus M''$, where the vertices of the indecomposable $A_{\mathfrak{p}}H$ -summands of M' are $O_p(H)$, and

Received by the editors September 7, 1995.

¹⁹⁹¹ Mathematics Subject Classification. Primary 20C10; Secondary 19A22, 20C15.

the vertices of M'' are proper subgroups of $O_p(H)$. By the definition of Φ_L (cf. [3] (2.1)), we have

$$i_{\mathfrak{p}'}\Phi_L(H,b,\mathfrak{p}') = \text{trace of } b \text{ acting on } M'.$$

If the action of b on M' has eigenvalues $\lambda_1, ..., \lambda_r$ in $A'_{\mathfrak{p}'}$, then $\Phi_L(H, b, \mathfrak{p}') = \sum_i \xi_i$, where ξ_i is the preimage of λ_i under $i_{\mathfrak{p}'}$. We will call this the **pretrace** of b on M' for convenience.

Denote $O_p(O^q(H)) = O_p(H) \cap O^q(H)$ by Q, and further decompose M'' as $M'' \simeq M''_1 \oplus M''_2$, where the vertices of the indecomposable $A_{\mathfrak{p}}H$ -summands of M''_1 contain Q and those of M''_2 do not.

Since every indecomposable $A_{\mathfrak{p}}H$ -summand of $M' \oplus M''_1$ has vertex P between Q and $O_p(H)$ from the above decomposition of M_H , it is an $A_{\mathfrak{p}}H$ -summand of $\operatorname{ind}_P^H(A_{\mathfrak{p}})$ by [3](1.1). Its restriction to $O^q(H)$ is then an $A_{\mathfrak{p}}O^q(H)$ -summand of $\operatorname{ind}_Q^{O^q(H)}(A_{\mathfrak{p}})$ by Mackey decompositon, hence has vertex Q. Every indecomposable summand of the restriction $(M''_2)_{O^q(H)}$ has vertex properly contained in Q as the vertex can only drop after restriction. Therefore from the above decomposition of M_H , the restriction of M to $O^q(H)$ has the decomposition $M_{O^q(H)} \simeq (M' \oplus M''_1)_{O^q(H)} \oplus (M''_2)_{O^q(H)}$, where the vertices of the indecomposable $A_{\mathfrak{p}}O^q(H)$ -summands of $(M' \oplus M''_1)_{O^q(H)}$ are Q, and the vertices of $(M''_2)_{O^q(H)}$ are proper subgroups of Q. Again by the definition of Φ_L , applied to $(O^q(H), b_{q'}, \mathfrak{p}')$, we obtain

$$\Phi_L(O^q(H), b_{q'}, \mathfrak{p}') = \text{ pretrace of } b_{q'} \text{ acting on } M' \oplus M''_1.$$

Now the congruence follows from

Claim. i) pretrace of b on $M' \equiv \text{pretrace of } b_{q'}$ on $M' \mod \mathfrak{q}'$; ii) pretrace of $b_{q'}$ on $M''_1 \equiv 0 \mod \mathfrak{q}'$.

Proof of Claim. i) If m is a sufficiently large power of q, we have $b^m = b^m_{q'}$, and the eigenvalues of b^m on M' have preimages $\xi^m_1, ..., \xi^m_r$ under $i_{\mathfrak{p}'}$. Hence

(pretrace of
$$b$$
) ^{m} = $(\sum_{i} \xi_{i})^{m} \equiv \sum_{i} \xi_{i}^{m}$ = pretrace of $b^{m} \mod \mathfrak{q}'$

and, for the same reason,

(pretrace of
$$b_{q'}$$
) ^{m} \equiv pretrace of $b_{q'}^{m}$ mod \mathfrak{q}' .

Combining gives

(pretrace of
$$b$$
) ^{m} \equiv (pretrace of $b_{q'}$) ^{m} mod \mathfrak{q}'

from which i) follows.

ii) We may assume $M_1'' \neq 0$. Then $Q \subseteq O_p(H)$, hence p must be equal to q, and $H/Q = (O_p(H)/Q) \times (O^q(H)/Q)$ is nilpotent.

Since Q acts trivially on M_1'' by [3](1.1), M_1'' can be considered as an $A_{\mathfrak{p}}H/Q$ -module. By [4]§2, this module has the structure,

$$M_1'' \simeq \sum_j N_j \otimes_{A_{\mathfrak{p}}} \operatorname{ind}_{D_j}^{O_p(H)/Q}(A_{\mathfrak{p}})$$

for some $A_pO^q(H)/Q$ -lattices N_j and some p-subgroups D_j of $O_p(H)/Q$. These D_j are actually the vertices of M_1'' , hence are properly contained in $O_p(H)/Q$.

If the eigenvalues of $b_{q'}$ on N_j have preimages $\xi_1^{(j)},...,\xi_{r_j}^{(j)}$ under $i_{\mathfrak{p}'}$, then the eigenvalues of $b_{q'}$ on $N_j\otimes_{A_{\mathfrak{p}}}\operatorname{ind}_{D_j}^{O_p(H)/Q}(A_{\mathfrak{p}})$ have preimages $\xi_1^{(j)},...,\xi_{r_j}^{(j)}$ each repeated $|O_p(H)/Q|:D_j|$ times. Thus

pretrace of
$$b_{q'}$$
 on $M_1'' = \sum_j |O_p(H)/Q: D_j| \sum_i \xi_i^{(j)} \equiv 0 \mod pA'$,

as required. This completes the proof of the claim, hence of the congruence. \Box

We want to examine the prime ideal spectrum $\operatorname{Spec}(\Omega_A(G))$ of the commutative ring $\Omega_A(G)$. Let $T_G(A)$ be the set of triples (H,b,\mathfrak{p}') , and $(A')^{T_G(A)}$ the ring of all maps on triples with values in A'. Since the ring homomorphism $\Phi:\Omega_A(G)\to \mathcal{O}_A(G)$ has a nilpotent kernel [3], and $\mathcal{O}_A(G)$ is a subring of $(A')^{T_G(A)}$ with finite **Z**-rank, it induces the surjection

$$\operatorname{Spec}((A')^{T_G(A)}) \xrightarrow{\operatorname{going-down}} \operatorname{Spec}(\operatorname{im}\Phi) \xrightarrow{\Phi^{-1}} \operatorname{Spec}(\Omega_A(G)).$$

 $\operatorname{Spec}(A')$ consists of the ideal 0 and the maximal ideals of A'. The spectrum of $(A')^{T_G(A)}$ can be identified with $T_G(A) \times \operatorname{Spec}(A')$: with each $T \in T_G(A)$ and each $\mathfrak{q}' \in \operatorname{Spec}(A')$ we associate the prime ideal \mathfrak{q}'_T consisting of those $f \in (A')^{T_G(A)}$ such that $f(T) \in \mathfrak{q}'$. The image of \mathfrak{q}'_T in $\operatorname{Spec}(\Omega_A(G))$ is the prime ideal $P_{\mathfrak{q}',T}$ corresponding to the prime ideal $\mathfrak{q}'_T \cap \operatorname{im}\Phi$ in $\operatorname{im}\Phi$ by Φ^{-1} , i.e.

$$P_{\mathfrak{q}',T} = \{ x \in \Omega_A(G) : \Phi_x(T) \in \mathfrak{q}' \}.$$

Lemma. With above notation, then

- (1) $P_{0,T} \subset P_{\mathfrak{q}',T}$;
- (2) If \mathfrak{q}' is a maximal ideal of A' above a prime number q and $T = (H, b, \mathfrak{p}')$ is a triple, we denote the triple $(O^q(H), b_{q'}, \mathfrak{p}')$ by T^q . Then $P_{\mathfrak{q}',T} = P_{\mathfrak{q}',T^q}$.

Proof. (1) is clear.

(2) By the congruences we have $\Phi_x(T) \equiv \Phi_x(T^q) \mod \mathfrak{q}'$ for $x \in \Omega_A(G)$. Thus $x \in P_{\mathfrak{q}',T} \iff \Phi_x(T) \in \mathfrak{q}' \iff \Phi_x(T^q) \in \mathfrak{q}' \iff x \in P_{\mathfrak{q}',T^q}$.

Corollary. Spec($\Omega_A(G)$) is connected.

Proof. Let C be the connected component of the point $P_{0,(1)}$ in $\operatorname{Spec}(\Omega_A(G))$ where (1) is the cyclic triple (cf. [3] §3) of the trivial subgroup. By (1) of the Lemma, the closure $\overline{\{P_{0,T}\}}$ contains $P_{\mathfrak{q}',T}$ for all \mathfrak{q}' . So it suffices to show that C contains $\overline{\{P_{0,T}\}}$ for every triple T. We proceed by induction on the order of the subgroup H appearing in the triple $T = (H, b, \mathfrak{p}')$.

If H is trivial this follows by the definition of C so we suppose H is non-trivial. Choose a prime number q so $O^q(H) \subsetneq H$, and a prime ideal \mathfrak{q}' of A' containing q. By (2) and (1) of the Lemma we have $P_{\mathfrak{q}',T} = P_{\mathfrak{q}',T^q}$, hence $\overline{\{P_{0,T}\}} \cap \overline{\{P_{0,T^q}\}}$ is not empty, and $\overline{\{P_{0,T}\}} \cup \overline{\{P_{0,T^q}\}}$ is connected. But $\overline{\{P_{0,T^q}\}} \subseteq C$ by the induction hypothesis, and therefore $\overline{\{P_{0,T}\}} \subseteq C$.

ACKNOWLEDGEMENT

I thank Alfred Weiss for his encouragement and interest in this work.

References

- 1. A. Dress, A characterization of solvable groups, Math. Z. 110 (1969), 213–217. MR 40:1491
- J. P. Serre, Linear Representations of Finite Groups, Springer-Verlag, New York, 1977. MR 56:8675
- 3. X. Wang, A. Weiss, Permutation Summands over ${\bf Z},$ J. Number Theory ${\bf 47}$ (1994), 413–434. MR ${\bf 95d:}20008$
- A. Weiss, Torsion units in integral group rings, J. Reine Angew. Math. 415 (1991), 175–187.
 MR 92c:20009

Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G $2\mathrm{G}1$

 $\it Current\ address:$ Department of Computer Science, University of Toronto, Toronto, Ontario, Canada M5S 1A4

 $E ext{-}mail\ address: xywang@cs.toronto.edu}$