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HYPERSPACES AND OPEN MONOTONE MAPS

OF HEREDITARILY INDECOMPOSABLE CONTINUA
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(Communicated by James West)

Abstract. We prove the following theorems:
Theorem 1. Let X be an n-dimensional hereditarily indecomposable contin-
uum. Then there exist 1-dimensional hereditarily indecomposable continua
Y1, Y2, ..., Yn and monotone maps pi : X −→ Yi such that (p1, p2, ..., pn) :
X −→ Y1 × Y2 × ...× Yn is an embedding and the space C(X) of all subcon-
tinua of X is embeddable in C(Y1) × C(Y2) × ... × C(Yn) by K ∈ C(X) −→
(p1(K), p2(K), ..., pn(K)).
Theorem 2. For every open monotone map ϕ with non-trivial sufficiently
small fibers on a finite dimensional hereditarily indecomposable continuum X
with dimX ≥ 2 there exists a 1-dimensional subcontinuum Y ⊂ X such that
dimϕ(Y ) =∞ and the restriction of ϕ to Y is also monotone and open.

The connection between these theorems and other results in Hyperspace

theory is studied.

1. Introduction

Let X be a compact metrizable space. 2X denotes the space of closed subsets of
X endowed with the Hausdorff metric. 2X is compact. C(X) is the closed subset
of 2X that consists of the subcontinua of X and Cε(X), ε ≥ 0, is the closed subset
of C(X) which consists of the subcontinua of X with diam ≤ ε. By the hyperspace
of X we mean C(X).

In Section 2 we prove

Theorem 1.1. Let X be an n-dimensional hereditarily indecomposable continuum.
Then there exist 1-dimensional hereditarily indecomposable continua Y1, Y2, ..., Yn
and monotone maps pi : X −→ Yi such that (p1, p2, ..., pn) : X −→ Y1×Y2× ...×Yn
is an embedding and C(X) is embeddable in C(Y1) × C(Y2) × ... × C(Yn) by K ∈
C(X) −→ (p1(K), p2(K), ..., pn(K)).

Theorem 1.2. Let X be a finite dimensional hereditarily indecomposable contin-
uum of dim ≥ 2 and let ϕ be an open monotone map on X with non-trivial suffi-
ciently small fibers. Then there exists a 1-dimensional subcontinuum Y of X such
that dimϕ(Y ) =∞.

The restriction of ϕ to Y is also open and monotone. This follows from
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Proposition 1.3. Let X be a hereditarily indecomposable continuum and let ϕ be
a monotone map on X. Then for every subcontinuum Y of X we have either
Y = ϕ−1(ϕ(Y )) or ϕ(Y ) is a singleton.

Proof. Assume that ϕ(Y ) is not a singleton. For every y ∈ ϕ(Y ), ϕ−1(y) is a
continuum which intersects Y , and since Y is not contained in ϕ−1(y) we have
ϕ−1(y) ⊂ Y and hence Y = ϕ−1(ϕ(Y )) .

Whitney maps give a tool for constructing monotone open maps on hereditarily
indecomposable continua.

Definition 1.4. (See [9]) Let X be a continuum. A map W : C(X) −→ R+ is
called a Whitney map if W vanishes on the set of singletons in C(X) and if A 6= B
in C(X) and A ⊂ B implies W (A) < W (B).

Whitney maps always exist: if {fn}∞n=1 is a dense sequence of functions in
C(X, [0, 1]) andWn(A) = diam fn(A), Wn : C(X) −→ [0, 1], thenW =

∑∞
n=1Wn/2

n

is a Whitney map.
If X is hereditarily indecomposable, then for every 0 < t ≤ W (X), W−1(t)

is an upper and lower semicontinuous decomposition of X and the corresponding
quotient map is an open monotone map with non-trivial fibers which can be made
arbitrarily small by choosing t close to 0. Note that if ϕ is a monotone open map on
X , then C(ϕ(X)) can be embedded in C(X) by K ∈ C(ϕ(X)) −→ ϕ−1(K) ∈ C(X).

It is well-known (Bing [1]) that every n-dimensional continuum contains an
(n − 1)-dimensional hereditarily indecomposable subcontinuum. Applying Theo-
rem 1.2 we obtain

Theorem 1.5. Every finite dimensional hereditarily indecomposable continuum X
with dimX ≥ 2 (and so every finite dimensional continuum X of dim ≥ 3) contains
a 1-dimensional subcontinuum Y such that dim C(Y ) =∞.

In [3] Kelley proved that if X is a hereditarily indecomposable continuum of
dim ≥ 2, then the image of X under an open monotone map with sufficiently small
non-trivial fibers is infinite dimensional and hence dim C(X) = ∞. So Theorems
1.2 and 1.5 generalize this result of Kelley. Recently it has been proved that the
hyperspace of every 2-dimensional continuum is infinite dimensional; see [7].

Question 1.6. Does Theorem 1.5 hold for every 2-dimensional continuum X?

It seems that this question is still open. The following theorem gives a partial
answer to Question 1.6.

Theorem 1.7. (Levin and Sternfeld [6]) For each natural number n every 2-dimen-
sional continuum X contains a 1-dimensional subcontinuum Yn with dim C(Yn) ≥ n.

Note that from Theorem 1.5 it follows that there exist 1-dimensional hereditarily
indecomposable continua with infinite dimensional hyperspaces. Clearly the same
result can also be obtained from Theorem 1.1. The first examples of such continua
were given by Lewis [8]. (This should be compared with Theorem 1.9.)

In Section 2 we present a few applications of the approach of this note. We will
also use

Theorem 1.8. (Bing [1]) An n-dimensional hereditarily indecomposable contin-
uum contains a point p such that every non-trivial subcontinuum containing p is of
dimension n.



HYPERSPACES AND OPEN MONOTONE MAPS 605

Theorem 1.9. (Krasinkiewicz [4]) The image of a planar hereditarily indecompos-
able continuum under an open monotone map is of dimension ≤ 1. The hyperspace
of a planar non-trivial hereditarily indecomposable continuum is 2-dimensional.

Theorem 1.10. (Kelley [3]) Let X be a continuum and let ϕ be an open monotone
map on X with non-trivial fibers and dimϕ(X) < ∞. Then there exists a 0-
dimensional closed subset Y of X such that ϕ(Y ) = ϕ(X).

2. Proofs and applications

In this section we prove Theorem 1.1 and Proposition 2.1 (a weaker version
of Theorem 1.2) which is the first step in proving Theorem 1.2, we present some
applications of the proofs of Theorem 1.2 and Proposition 2.1, and finally we prove
Theorem 1.2.

Recall the following facts from Dimension Theory [2]. Let f : X −→ Y . dim f =
sup{dim f−1(y) : y ∈ Y }. 0-dimensional maps are also called light. For every n-
dimensional compactum and for every 0 ≤ k ≤ n there exists an (n−k)-dimensional
map g : X −→ Rk. If X is an n-dimensional compactum, then there exists ε > 0
such that the image of X under every ε-map (=map with fibers of diam≤ ε) is of
dim ≥ n.

Proof of Theorem 1.1. The proof is based on the ideas of [5]. Take a 0-dimensional
map g = (g1, g2, ..., gn) : X −→ Rn where gi : X −→ R. Let gi = hi ◦ pi be the
monotone-light decomposition of gi where pi is monotone and hi is light. Denote
Yi = pi(X). Since hi maps Yi to R, by Hurewicz’s theorem dimYi ≤ 1. Define
p = (p1, p2, ..., pn) : X −→ Y1 × Y2 × ...× Yn. Clearly for every x ∈ X , p−1(p(x)) =
p−1

1 (p1(x)) ∩ p−1
2 (p2(x)) ∩ ... ∩ p−1

n (pn(x)). So p is monotone (as X is hereditarily
indecomposable and pi are monotone) and since the fibers of p are contained in the
fibers of g, p has to be an embedding. Define p∗i : C(X) −→ C(Yi) by K ∈ C(X) −→
pi(K) ∈ C(Yi). Obviously p∗i are continuous.

Let us show that p∗ = (p∗1, p
∗
2, ..., p

∗
n) : C(X) −→ C(Y1)×C(Y2)× ...×C(Yn) is an

embedding. Take K1,K2 ∈ C(X) such that pi(K1) = pi(K2) for every i. Denote
Ti = pi(K1) = pi(K2). If for some i, Ti is not a singleton, then by Proposition 1.3
K1 = K2 = pi

−1(Ti). If for every i, Ti is a singleton, then K1 = K2 as p is an
embedding. So p∗ is an embedding.

Proposition 2.1. Let X be a finite dimensional hereditarily indecomposable con-
tinuum and let f be an open monotone map of X with sufficiently small non-
trivial fibers. Then there exists a 1-dimensional subcontinuum Y of X such that
dim f(Y ) ≥ dimX.

Proof. Let n = dimX , let g : X −→ Rn−1 be a 1-dimensional map and let g = h◦p
be the monotone-light decomposition of g where p is monotone and h is light.
Clearly p is 1-dimensional. As h : p(X) −→ Rn−1 is light, by Hurewicz’s theorem
dim p(X) ≤ n− 1.

Define q : X −→ p(X)×f(X) by q(x) = (p(x), f(x)) and let Z = q(X). For every
x ∈ X , q−1(q(x)) = p−1(p(x)) ∩ f−1(f(x)). As X is hereditarily indecomposable
and p and f are monotone, every fiber of q coincides with a fiber of p or with a
fiber of f .

Denote Xp = {x ∈ X : q−1(q(x)) = p−1(p(x))} and Xf = {x ∈ X : q−1(q(x)) =
f−1(f(x))}. Clearly X = Xp ∪ Xf and Xf = f−1(f(Xf )) = q−1(q(Xf )), Xp =
p−1(p(Xp)) = q−1(q(Xp)).
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Xf is closed in X . Indeed, let x1, x2, ... ∈ Xf converge to x ∈ X . Define

Kf
i = f−1(f(xi)), K

p
i = p−1(p(xi)) and Kf = f−1(f(x)), Kp = p−1(p(x)). As

xi ∈ Xf , Kf
i ⊂ K

p
i . Since f is open, Kf = limKf

i in 2X and as p is continuous we
have Kf ⊂ Kp, that is, x ∈ Xf .
Xf is 1-dimensional. Indeed, for every x ∈ Xf , f−1(f(x)) ⊂ Xf . f−1(f(x))

is non-trivial and 1-dimensional since f−1(f(x)) ⊂ p−1(p(x)) and dim p−1(p(x))
= 1 as p is 1-dimensional. Take any component T of Xf . For every x ∈ T ,
x ∈ f−1(f(x)) ⊂ T and hence by Theorem 1.8 dimT = 1. So dimXf = 1.
q acts on Xp as p and on Xf as f . By this we mean the following. Let qp and

qf be the projections of Z to p(X) and f(X) respectively. Clearly p = qp ◦ q and
f = qf ◦ q.

X

Z f(X)p(X)Rn−1

?
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It is easy to see that q(Xp) = {z ∈ Z : z = q−1
p (qp(z))}, q(Xf ) = {z ∈ Z :

z = q−1
f (qf (z))} and hence qp and qf are homeomorphisms on q(Xp) and q(Xf )

respectively.
So dim q(Xp) = dim p(Xp) ≤ dim p(X) = n − 1 and dim q(Xf ) = dim f(Xf ).

The fibers of q are contained in the fibers of f and we can assume that the
fibers of f are so small that dimZ ≥ n. Since Xf is closed, n ≤ dimZ =
max{dim q(Xp), dim q(Xf )} ≤ max{n − 1, dim f(Xf )} and hence dim f(Xf ) ≥ n.
Take a component T of f(Xf) such that dimT ≥ n and set Y = f−1(T ). Then
Y is a continuum (as f is monotone ) and Y ⊂ Xf (as Xf = f−1(f(Xf )).) So
dimY ≤ dimXf = 1 and we are done.

Applications. Now we apply the proofs of Theorem 1.1 and Proposition 2.1 to
some special 2-dimensional continuum X and special maps g.

Let X be a 2-dimensional hereditarily indecomposable continuum embeddable
in R3. Let s = (s1, s2, s3) : X −→ R3 be an embedding of X where si : X −→ R.
Note that for every i each fiber of si is a planar compactum.

For Theorem 1.1 define g = (g1, g2) by g1 = s1, g2 = s2. The fibers of g
are embeddable in R and hence they are 0-dimensional since X is hereditarily
indecomposable. So dim g = 0.

For Proposition 2.1 define g = s1. The fibers of this map are embeddable in R2

and hence they are of dim ≤ 1 as X is hereditarily indecomposable. So in this case
dim g = 1.

(i) In the proof of Theorem 1.1 we get that for every i = 1, 2, dim p∗i = 2. Indeed,
take some i and let K1,K2 ∈ C(X) be such that K1 6= K2 and pi(K1) = pi(K2).
By Proposition 1.3 pi(K1) and pi(K2) must be singletons and hence K1,K2 ⊂
p−1
i (y) for some y ∈ Yi. The fibers of pi are contained in the fibers of gi which

can be embedded in the plane (by our special choice of gi). So by Theorem 1.9
dim C(p−1

i (y)) = 2 and dim p∗i = 2.
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In particular this implies that for both Y1 and Y2 we have dim C(Yi) = dim Cε(Yi)
=∞ for every ε > 0 (since dim Cε(X) =∞ for every ε > 0.)

(ii) In the proof of Proposition 2.1 we get that for a sufficiently small ε > 0,
dim Cε(Y ) = 2 (though dim C(Y ) =∞!).

Define t = inf{diam f−1(f(y)) : y ∈ Y }. t > 0 since f has non-trivial fibers.
Note that f−1(f(y)) is contained in Y for every y ∈ Y . Take any open monotone
map d on Y such that r = sup{diamd−1(d(y)) : y ∈ Y } < t. Let us show that
dim d(Y ) = 1. Take some y ∈ Y . Since Y ⊂ Xf we have q−1(q(y)) = f−1(f(y)) =
f−1(f(y)) ∩ p−1(p(y)). So f−1(f(y)) is contained in some fiber of p and hence
f−1(f(y)) is also contained in some fiber of g which is planar (by our choice of
g). By Proposition 1.3 the restriction of d to the continuum f−1(f(y)) is open and
monotone and hence by Theorem 1.9 dim d(f−1(f(y))) ≤ 1 and since r < t we have
dim d(f−1(f(y))) = 1. So d(Y ) is covered by 1-dimensional continua and hence by
Theorem 1.8 dim d(Y ) = 1.

Let W be a Whitney map for Y , let a > 0 be such that for F ∈ C(Y ), W (F ) ≤ a
implies that diamF < t and let ε > 0 be so small that Cε(Y ) ⊂ W−1([0, a]).
Then dimW−1(b) = 1 for 0 ≤ b ≤ a since W−1(b) is an image of Y under an open
monotone map with fibers of diam< t and by the above such an image is of dim= 1.
Hence by Hurewicz’s theorem dimW−1([0, a]) ≤ 2. On the other hand for every
non-trivial F ∈ Cε(Y ), C(F ) is embeddable into Cε(Y ) and by [9], Theorem 2.1,
dim C(F ) ≥ 2. So dim Cε(Y ) = 2 and we are done.

(iii) In the proof of Proposition 2.1 we get that dim f(Y ) = 2 (this should be
compared with Theorem 1.2).

We recall that for every z ∈ q(Xp), z = q−1
p (qp(z)).

Let z ∈ q(Xf ). It is easy to see that q−1
p (qp(z)) ⊂ q(Xf ) and qf (q−1

p (qp(z))) =

f(p−1(qp(z))). By Proposition 1.3 the restriction of f to p−1(qp(z)) is open and
monotone and since p−1(qp(z)) is a planar continuum, dim f(p−1(qp(z))) ≤ 1 by
Theorem 1.9, and as qf is a homeomorphism on q(Xf ) we have

dim q−1
p (qp(z)) = dim qf (q−1

p (qp(z))) = dim f(p−1(qp(z))) ≤ 1.

So dim qp ≤ 1 and by Hurewicz’s theorem dimZ ≤ dim p(X)+dim qp ≤ 1+1 = 2.
Then dim f(Y ) ≤ dim f(Xf ) = dim q(Xf ) ≤ dimZ ≤ 2 and hence dim f(Y ) =
dimZ = 2 as dim f(Y ) ≥ dimX = 2.

Proof of Theorem 1.2. Replacing X by a 2-dimensional subcontinuum of X and
applying Proposition 1.3 we may assume without loss of generality that dimX = 2.

Then there exist disjoint closed subsets F1, F2 of X and r = r(F1, F2) > 0
such that every closed set which separates between F1 and F2 has a component of
diam≥ r. Assume that

(1) the fibers of ϕ are of diam < min{r, dist.(F1, F2)}.
Let W : C(X) −→ R+ be a Whitney map for X . Since the fibers of ϕ are non-
trivial we can take some 0 < t < inf{W (ϕ−1(y)) : y ∈ ϕ(X)} and let f : X −→
f(X) = W−1(t) be the quotient map. For every x ∈ X , ϕ−1(ϕ(x)) is not contained
in f−1(f(x)) since W (f−1(f(x))) = t < W (ϕ−1(ϕ(x))) and as X is hereditarily in-
decomposable we have f−1(f(x)) ⊂ ϕ−1(ϕ(x)) and f−1(f(x)) 6= ϕ−1(ϕ(x)). Then
there exists ψ : f(X) −→ ϕ(X) such that ϕ = ψ ◦ f and clearly f and ψ are open
monotone maps with non-trivial fibers.

We will use the construction, notations and conclusions of the proof of Proposi-
tion 2.1 for f and some auxiliary 1-dimensional map g : X −→ R.



608 MICHAEL LEVIN

X

Z f(X) = W−1(t)p(X) ϕ(X)R
?

@
@
@
@R

�
�
�
�	

��
��

��
����

XXXXXXXXXXXXXXz
fqpg

ϕ

qfqph ψ
-�� -

Recall that in the end of the proof of Proposition 2.1 we define Y = f−1(T ) where
T is a component of f(Xf ) which satisfies the condition dimT ≥ 2. For Theorem
1.2 we need that T satisfies another condition instead of dimT ≥ 2, namely:

(2) for every closed L which separates between f(F1) and f(F2) there exists a
component of f−1(L) ∩ f−1(T ) with diam> r.

Note that by (1) ϕ(F1) ∩ ϕ(F2) = ∅ and hence f(F1) ∩ f(F2) = ∅. Let us show
that there exists a component T of f(Xf ) which satisfies (2).

Assume the contrary, that is, for every component T of f(Xf ) we can find a closed
set LT separating f(F1) and f(F2) such that every component of f−1(LT )∩f−1(T )
is of diam≤ r. Then one easily obtains that there exist closed subsets G1

T , G2
T and

VT of f(Xf) such that
(3) VT is clopen in f(Xf ),
(4) f(F1) ∩ VT ⊂ G1

T ⊂ VT , f(F2) ∩ VT ⊂ G2
T ⊂ VT and G1

T ∩G2
T = ∅,

(5) every component of f−1(VT \ (G1
T ∪G2

T )) is of diam≤ r.
Take a finite cover VT1 , VT2 , ..., VTm of f(Xf ) where T1, T2, ..., Tm are components
of f(Xf ) and define

G1 = G1
T1
∪ (G1

T2
\ VT1) ∪ (G1

T3
\ (VT1 ∪ VT2)) ∪ ... ∪ (G1

Tm \ (VT1 ∪ ... ∪ VTm−1)),

G2 = G2
T1
∪ (G2

T2
\ VT1) ∪ (G2

T3
\ (VT1 ∪ VT2)) ∪ ... ∪ (G2

Tm \ (VT1 ∪ ... ∪ VTm−1)).

Then by (4) f(F1)∩f(Xf ) ⊂ G1 ⊂ f(Xf ), f(F2)∩f(Xf ) ⊂ G2 ⊂ f(Xf ), G1∩G2 =
∅ and by (3) and (5) we have

(6) every component of f−1(f(Xf ) \ (G1 ∪G2)) is of diam≤ r.
Let a closed subset H of Z separate q−1

f (f(F1)∪G1) and q−1
f ((f(F2)∪G2) such that

dimH ∩ q(Xp) ≤ 0 (we recall that dim q(Xp) = dim p(Xp) ≤ dim p(X) ≤ 1). It is
easy to see that each z ∈ H \ q(Xf ) is a component of H since q(Xf ) is closed and
the set H \ q(Xf ) ⊂ H ∩ q(Xp) is 0-dimensional. Recall that Xf = f−1(f(Xf )) =
q−1(q(Xf )). So for every component K of q−1(H) which intersects X \Xf , q(K)
intersects H \ q(Xf ) and hence q(K) is a singleton and by (1) diamK ≤ r.

By (6) the components of q−1(H) which are contained in Xf also have diam≤ r.
So every component of q−1(H) is of diam≤ r and since q−1(H) separates between
F1 and F2 we get a contradiction.

This shows that there exists a component T of f(Xf) for which (2) holds and
we claim that dimψ(T ) = ∞. As f is monotone, f(X) is hereditarily indecom-
posable. By (1) and (2) ψ(T ) cannot be a singleton and hence by Proposition
1.3 the restriction of ψ to T is an open monotone map with non-trivial fibers. If
dimψ(T ) < ∞, then by Theorem 1.10 there exists a 0-dimensional closed subset
Q of T which intersects every fiber of ψ meeting T . Take a closed subset L which
separates between f(F1) and f(F2) such that L ∩Q = ∅. Then the components of
f−1(L) ∩ f−1(T ) cannot contain a fiber of ϕ and hence they are contained in the
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fibers of ϕ since X is hereditarily indecomposable. So by (1) the components of
f−1(L) ∩ f−1(T ) have diam< r and this contradicts (2).

Thus dimψ(T ) =∞ and we obtain that for Y = f−1(T ), dimϕ(Y ) = dimψ(T )
=∞. Recall that by the proof of Proposition 2.1 dimY = 1.

Remark. Combining Theorem 1.2 and Theorem 1.9 we get that every 2-dimensional
hereditarily indecomposable continuum (and so every 3-dimensional continuum)
contains a 1-dimensional subcontinuum not embeddable in the plane.
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