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Abstract. Let X be a Tychonoff space and A a subalgebra of C(X) con-
taining C∗(X). Suppose that CK(X) is the set of all functions in C(X) with
compact support. Kohls has shown that CK(X) is precisely the intersection
of all the free ideals in C(X) or in C∗(X). In this paper we have proved the
validity of this result for the algebra A. Gillman and Jerison have proved that
for a realcompact space X, CK(X) is the intersection of all the free maximal
ideals in C(X). In this paper we have proved that this result does not hold for
the algebra A, in general. However we have furnished a characterisation of the
elements that belong to all the free maximal ideals in A. The paper terminates
by showing that for any realcompact space X, there exists in some sense a min-
imal algebra Am for which X becomes Am-compact. This answers a question
raised by Redlin and Watson in 1987. But it is still unsettled whether such a
minimal algebra exists with respect to set inclusion.

1. Introduction

One of the fascinating problems considered in Gillman and Jerison [2] is that of
characterising the intersection of all the free maximal ideals in the algebra C(X) of
real-valued continuous functions on a Tychonoff space X and its subalgebra C∗(X)
of bounded functions. Suppose CK(X) is the set of all functions in C(X) which
have compact support, and let C∞(X) consist of exactly those functions f in C(X)
which vanish at ∞ in the sense that {x ∈ X : |f(x)| ≥ 1

n} is compact for each
n in N. Kohls [3] has shown that the intersection of all the free ideals in C(X)
or in C∗(X) is CK(X). We have established the truth of the same result for a
subalgebra A of C(X) that contains C∗(X). Kohls [3] has further proved that the
intersection of all the free maximal ideals in C∗(X) is precisely the set C∞(X).
Incidentally it is shown in [2] that for a realcompact space X , CK(X) is identical
to the intersection of all the free maximal ideals in C(X). In this paper we show
that for a subalgebra A of C(X) containing C∗(X), each element f belonging to
the intersection of all the free maximal ideals in A is characterised by the property
that {x ∈ X : |f(x)g(x)| ≥ 1

n} is compact for each n in N and for each g in A.
It is interesting to note that this result puts the two earlier results into a common
setting.
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Redlin and Watson [5] introduced the notion of A-compactness of which com-
pactness and realcompactness are particular cases. According to this terminology
a compact space is C∗-compact while a realcompact space is C-compact. In view
of the result of the last paragraph, note that if A = C(X) or C∗(X) and X is A-
compact, then CK(X) is identical to the intersection of all the free maximal ideals
in A. We have constructed an example which shows that such a conclusion is not
true in general for an arbitrary A-compact space.

We conclude the paper by showing that given any realcompact space X , there
exists in some sense a minimal algebra Am lying between C(X) and C∗(X) for
which X becomes Am-compact. This gives an answer to the question raised by
Redlin and Watson [5]. It has further been shown that a minimal algebra thus
obtained need not be minimal with respect to set inclusion, however it still remains
open whether such a minimal algebra exists with respect to set inclusion.

2. Intersection of free maximal ideals

Throughout the paper X stands for a Tychonoff space and subalgebras of C(X)
are supposed to contain C∗(X). For any f in C(X), Z(f) will denote the zero-set
{x ∈ X : f(x) = 0}. Ideals of subalgebras of C(X) are assumed to be proper.
An ideal I in a subalgebra A of C(X) is called fixed if

⋂
Z[I] 6= ∅, otherwise I

is said to be free. Each member f of C(X) has a unique continuous extension
f∗ : βX −→ R∗, where R∗ is the one-point compactification of R; if f ∈ C∗(X),
f∗ is the same as fβ , the unique extension of f to βX . Plank [4] has shown that
the family of all the maximal ideals in A is precisely the set {Mp

A : p ∈ βX} where
Mp
A = {f ∈ A : (fg)∗(p) = 0 ∀g ∈ A}; and Mp

A is a free ideal if and only if p
belongs to βX −X .

If F is the intersection of all the free ideals in A, then it is easy to show that
CK(X) ⊂ F . On the other hand, CK(X) =

⋂
p∈βX−X O

p (see [2], 7E) where for

each p in βX , Op = {f ∈ C(X) : clβXZ(f) is a neighbourhood of p}. Furthermore
for each p in βX , Op is the intersection of all the prime ideals containing it and
contained in Mp

C and hence

CK(X) =
⋂

p∈βX−X
{P ∩A : Op ⊂ P ⊂Mp

C , P is a prime ideal in C(X)}.

It is clear that for any prime ideal P in C(X) appearing on the right side of the
above equality, P ∩A is a free prime ideal of A. Hence F ⊂ CK(X). Thus we have
the following result.

Theorem 2.1. CK(X) is the intersection of all the free ideals in A.

In order to describe the intersection of all the free maximal ideals in A, let
A∞(X) denote the family of all functions f in A for which the set An(fg) =
{x ∈ X : |f(x)g(x)| ≥ 1

n} is compact for each n in N and each g in A. If f
belongs to A∞(X), g is in A, p belongs to βX − X and ε > 0, then it is easy
to see in view of the continuity of (fg)β at p and denseness of X in βX that
|(fg)β(p)| < 1

n + ε for each n in N. Consequently βX −X ⊂ Z((fg)β) and hence
A∞(X) ⊂

⋂
{Mp

A : p ∈ βX − X}. Conversely, if f belongs to Mp
A for each p in

βX −X and g is in A, then fg belongs to C∗(X) and βX −X ⊂ Z((fg)β). We
claim that An(fg) is compact. If not, then there exists p in clβXAn(fg)−An(fg)
for which (fg)β(p) = 0. But |fg|β(clβXAn(f.g)) ⊂ clR(|f.g|(An(f.g))) ⊂ [ 1

n ,∞)
—a contradiction. Therefore we have the following result:
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Theorem 2.2. A∞(X) is the intersection of all the free maximal ideals in A.

We note that if X is realcompact and A = C(X), then A∞(X) is the family of
all functions in C(X) with compact support, and so Theorem 8.19 of [2] follows
from our Theorem 2.2. On the other hand if A = C(X), then A∞(X) and C∞(X)
are identical and hence Lemma 3.2 of [3] is also a special case of Theorem 2.2.

3. A-compactness

Following Redlin and Watson [5], we define a maximal ideal M in A to be real
if the quotient field A/M is isomorphic to R, otherwise M is called hyperreal. X is
called A-compact if every real maximal ideal in A is fixed. In view of this definition
it follows that a compact space is C∗-compact while a realcompact space is C-
compact.

As in [2], 7.9(b), one can prove the following lemma.

Lemma 3.1. For each p in βX, Mp
A is hyperreal if and only if Mp

C∗ contains a
unit of A.

In what follows we give a useful characterisation of A-compactness.

Theorem 3.2. A space X is A-compact if and only if for every p in βX−X, there
exists an f in C∗(X) such that f is a unit of A and fβ(p) = 0 (or equivalently X
is A-compact if and only if for every p in βX −X, there exists a unit g of A such
that g−1 ∈ C∗(X) and g∗(p) =∞).

Proof. Let X be A-compact and p ∈ βX − X . Then Mp
A is hyperreal and hence

by Lemma 3.1, Mp
C∗ = {h ∈ C∗(X) : hβ(p) = 0} contains a unit f of A. Clearly

fβ(p) = 0. Conversely, let the given condition hold. Then for any p ∈ βX − X ,
fβ(p) = 0 for some f in C∗(X) with f a unit of A. Since now f ∈ Mp

C∗ , Lemma
3.1 implies that Mp

A is hyperreal and hence X is A-compact.

Remark 3.3. If we take A = C(X) in the above theorem, then we have the following
result.
X is realcompact if and only if each point of βX −X is contained in a zero-set

in βX which misses X.
This is in fact the content of a theorem of Hewitt (see [6], page 31).

Note that if X is C-compact (respectively C∗-compact), then CK(X) is the same
as the intersection of all the free maximal ideals in C(X) (respectively C∗(X)). The
following example shows that this is not true for an arbitrary A-compact space. In
what follows for any subfamily F of C(X), the subset A(F) will stand for the
smallest subalgebra of C(X) containing F .

Example 3.4. Consider A = A(C∗(N) ∪ {i}), where i(n) = n for each n in N.
Since Z(jβ) = βN − N, where j = i−1, it follows from Theorem 3.2 that N is A-
compact. Let h in C∗(N) be defined as h(n) = e−n for each n in N. Then hβ(p) = 0
for all p in βN − N, consequently (hg)∗(p) = 0 for all p in βN − N and for all g in
C∗(N). Since limn→∞(nse−n) = 0 for each s in N, this clearly implies (hg)∗(p) = 0
for all p in βN−N and for all g in A. Hence h belongs to every free maximal ideal
in A, yet h does not belong to CK(N).
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4. On a question raised by Redlin and Watson

Redlin and Watson [5] raised the following question: Given a realcompact space
X , does there exist in some sense a minimal algebra Am over R for which X is
Am-compact? In this section we give an answer to this question. We recall the
well-known fact that X is σ-compact and locally compact if and only if βX −X is
a zero-set in βX (see [6], Exercise 1B).

Consider any noncompact, σ-compact and locally compact space X . Then there
exists an f in C∗(X) for which βX − X = ZβX(fβ). Let g = f−1 and A =
A(C∗(X) ∪ {g}). Then Theorem 3.2 implies that X is A-compact. Also X is not
C∗-compact. It might be tempting to conjecture that A is the smallest subalgebra
of C(X) with respect to the set inclusion relation for which X becomes A-compact.
That this is false for a suitable choice of X is established in the following example.

Example 4.1. Consider an f in C∗(N) such that f(n) > 0 for each n ∈ N and
limn→∞f(n) = 0. Then βN − N = Z(fβ). Let g = f−1 which belongs to C(N)
and set B = A(C∗(N) ∪ {g}). Then by Theorem 3.2, N becomes B-compact. Now
define D = A(C∗(N)∪{loge(1+g)}). We shall show that N is D-compact and D ⊂

6=

B. Since limn→∞f(n) = 0 , limn→∞
loge(1+g(n))

g(n) = 0. Consequently
loge(1+g)

g ∈
C∗(N) ⊂ B. Hence loge(1 + g) is a member of B. Thus D is contained in B. To
show that the inclusion relation is proper, we shall show that g belongs to D−B. If
not, then g must be a polynomial of the members of the set C∗(N)∪ {loge(1 + g)}.
This means that g is of the form g = f0(loge(1+g))m+f1(loge(1+g))m−1+· · ·+fm,
where f0, f1, . . . , fm ∈ C∗(N),m ∈ N. This implies that g

(loge(1+g))n ∈ C∗(N) —– a

contradiction to the fact that limn→∞
g(n)

loge(1+g))n =∞.

The above example prompts us to frame the following:

Conjecture. There does not exist any minimal subalgebra A of C(N), in the usual
inclusion sense, for which N becomes A-compact.

Nevertheless we give an affirmative answer to Redlin and Watson’s question by
defining an ordering among the elements of Σ(X) in a suitable way, where Σ(X)
denotes the set of all subalgebras of C(X) containing C∗(X). For each A in Σ(X),
let αA be the smallest cardinal number of a subfamily GA of A − C∗(X) with the
property A = A(C∗(X) ∪ GA). For any two A,B of Σ(X) we define A ≺ B if and
only if αA ≤ αB. Then ≺ becomes a preorder on Σ(X) with respect to which an
arbitrary pair of members of Σ(X) can be compared.

Theorem 4.2. Let X be a realcompact space. Then there exists a minimal algebra
Am in Σ(X) with respect to the ordering ≺ for which X becomes Am-compact.

Lemma 4.3. Given p ∈ βX and A ∈ Σ(X), Mp
A is real if and only if f∗(p) is a

real number for each f in A.

The proof of the lemma is quite similar to that of Theorem 8.4 of [2].

Proof of the theorem. The proof is trivial when X is compact. So suppose that X
is not compact. Since X is realcompact, in view of Remark 3.3 we have a subset
Fm of C∗(X) with a smallest cardinal number α with the property βX − X =⋃
f∈Fm Z(fβ) and Z(fβ) 6= ∅ for each f ∈ Fm. It is clear that each f in Fm is a unit

of C(X) and moreover f−1 belongs to C(X)−C∗(X). Let Am = A(C∗(X)∪{f−1 :
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f ∈ Fm}). Then by Theorem 3.2, X is Am-compact, also αAm ≤ α. Assume that
for some A in Σ(X), X is A-compact. To complete the proof it is enough to show
that α ≤ αA. Now there exists a subset GA of A − C∗(X) with cardinal number
αA such that A = A(C∗(X) ∪ GA).

We claim that for each p in βX −X , there exists a g in GA with g∗(p) =∞. If
not, then there exists a point q in βX−X such that for each h in GA, h∗(q) is real.
Now since X is A-compact and M q

A is hyperreal, by Lemma 4.3, there exists a g
in A for which g∗(q) =∞. Since g can be expressed as g = t(g1, g2, . . . , gn), where
g1, g2, . . . , gn are members of GA and t is a polynomial in these n variables with
coefficients from C∗(X), it follows that g∗(q) is a real number —– a contradiction.
Let FA = {(g ∨ 1)−1 : g ∈ GA}; then each member of FA is a positive real-valued
bounded function on X , taking values arbitrarily near to zero. Therefore in view of
the above observation one can write βX−X =

⋃
{Z(fβ) : f ∈ FA} with Z(fβ) 6= ∅

for each f in FA. Hence by the definition of α, it is less than or equal to the cardinal
number of the family FA and consequently α ≤ αA.

The authors wish to thank the referee for suggesting various improvements of
the paper.
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