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ON BERNSTEIN TYPE THEOREMS CONCERNING

THE GROWTH OF DERIVATIVES OF ENTIRE FUNCTIONS

SEN-ZHONG HUANG

(Communicated by Theodore W. Gamelin)

Abstract. A subspace X of L1
loc(R) which is invariant under all left transla-

tion operators Tt, t ∈ R, is called admissible if X is a Banach space satisfying
the following properties:

(i) If ‖fn‖X → 0, then there exists a subsequence (nk) such that fnk (s)→ 0
almost everywhere.

(ii) The group TX := {Tt|X : t ∈ R} is a bounded strongly continuous
group. In this case, let

CX := sup{‖Tt‖X : t ∈ R}.
Typical admissible spaces are C0(R), BUC(R) and all spaces Lp(R) for

1 ≤ p < ∞. More generally, all of the Peetre interpolation spaces of two
admissible spaces X1, X2 are also admissible.

A function g ∈ L1
loc(R) is called subexponential if for every δ > 0, e−δ|t|g(t)

∈ L1(R). With these definitions our main result goes as follows:

Theorem 1. If g is an entire function of exponential type τ such that its
restriction to the real axis, denoted by gR, is subexponential and belongs to
some admissible space X, then the derivative g′R is also in X. Moreover,

‖αgR + g′R‖X ≤ (α2 + τ2)1/2 · CX · ‖gR‖X for each real α.

This result yields as consequences and in a systematic way many new and
old Bernstein type inequalities.

1. The main theorems

Recall that an entire function f is called to be of exponential type τ if

lim sup
r→∞

logM(r)

r
= τ,

where M(r) := max{|f(z)| : |z| ≤ r} is the maximum modulus of f. The classical
Bernstein theorem [Bo, p.206, Theorem 11.1.2] states that if f is an entire function
of exponential type τ and is bounded on the real axis by M , then |f ′(t)| ≤ τM for
all t ∈ R, or equivalently, ‖f ′‖∞ ≤ τ‖f‖∞ for each entire function f of exponential
type τ. The latter is referred as to Bernstein’s inequality. Many extensions are
given, see [Bo, Chap. 11], [D-S], [Le, Chap. IV] and [K-S-T]. It is the purpose of
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this paper to give a systematical treat of these results and to find more Bernstein
type inequalities.

We refer to Timan’s book [Ti] or Lorentz’s book [Lor] for applications of Bern-
stein’s inequality to the Theory of Approximation of Functions.

As a preparation, recall from [Do, p.104] that an element h in a unital Banach
algebra A is called hermitian if the group {eith : t ∈ R} is isometric, i.e.,

‖eith‖ = 1 for all t ∈ R.

Many equivalent conditions are known, see [Do, p.104, Theorem 4.7] or [Pal, pp.267-
268]. For example, it is shown that h is hermitian if and only if the numerical
range

W (h) := {ω(h) : ω ∈ A∗W }

is contained in the real axis, where the set A∗W consists of all ω ∈ A∗ such that
ω(1) = ‖ω‖ = 1. The remarkable fact about hermitian elements is the following
formula of Sinclair [Si]: For each hermitian element h ∈ A and each real α ∈ R
there holds

‖iα+ h‖ = r(iα+ h) := sup{
√
α2 + λ2 : λ ∈ σ(h)}.(∗)

The proof of this formula for the case α = 0, due to Bonsall and Crabb [B-C]
(see also [Do, pp. 105-106] or [Pal, pp.265-267]), is elementary. However, Sinclair’s
original proof is based on the following result of Duffin and Schaeffer [D-S, Theorem
1], which extends the above Bernstein theorem and asserts that

|f ′(t) + αf(t)| ≤ (α2 + τ2)1/2 · sup{|f(s)| : s ∈ R}, α, t ∈ R,

for every entire function f of exponential type τ. In [Re], there is a very simple proof
of Duffin and Schaeffer’s theorem. At this point the author thanks the referee for
drawing his attention to [Re].

To continue, let L1
loc(R) be the complex linear space of all locally Lebesgue

integrable functions on R. For each t ∈ R and f ∈ L1
loc(R) define f t to be the left

translation of f, i.e.,

f t(s) := f(s+ t) for all s ∈ R.

Define the left translation operators through

Ttf := f t for all f ∈ L1
loc(R), t ∈ R.

The set of operators T := {Tt : t ∈ R} satisfies the group property

TsTt = Ts+t for all s, t ∈ R.

Definition 1. A translation-invariant linear subspace X of L1
loc(R) is called ad-

missible if X is a Banach space satisfying the following properties:

(i) If ‖fn‖X → 0, then there exists a subsequence (nk) such that fnk(s) → 0
almost everywhere.

(ii) The group TX := {Tt|X : t ∈ R} is a bounded strongly continuous group on
X. In this case, let

CX := sup{‖Tt‖X : t ∈ R}.
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Typical examples of admissible spaces are C0(R), the space BUC(R) of all
bounded and uniformly continuous functions with the supremum norm and the
Lp-spaces Lp(R) for 1 ≤ p < +∞. On each of these spaces T defines an isometric
strongly continuous group. More examples can be obtained by taking T -invariant
subspaces of the above typical examples or through interpolation of these spaces.
We note that many Orlicz spaces and Lorentz spaces are also admissible. In the
subsequent section we will return to these constructions.

Next, we recall that the convolution of two functions f, g ∈ L1(R) is defined
through

f ∗ g(t) :=

∫ ∞
−∞

f(s)g(t− s) dt, t ∈ R.

With this operation L1(R) becomes a commutative Banach algebra, called the
group algebra on R. The Fourier transform of a function f ∈ L1(R) is given by

f̂(s) :=

∫ ∞
−∞

e−istf(t) dt, s ∈ R.

If f̂ ∈ L1(R), then the inverse formula holds (see [Ka, Theorem 1.11, p.125]):

f(t) =
1

2π

∫ ∞
−∞

eitsf̂(s) ds for almost every t ∈ R.

Let X be an admissible space. For f ∈ L1(R), define the operator Tf ∈ L(X)
by the following Bochner integral:

Tf (x) :=

∫ ∞
−∞

Tt(x)f(t) dt for all x ∈ X.

It is easily verified that the mapping f 7→ Tf is a continuous algebra homomorphism.
Hence, the set

IT := {f ∈ L1(R) : Tf = 0}
is a closed ideal in L1(R). The Arveson spectrum [Ar] of TX is defined as the hull
of IT , i.e.,

Sp(TX) := hull(IT ) = {t ∈ R : f̂(t) = 0, ∀f ∈ IT }.
For x ∈ X, consider

IT (x) := {f ∈ L1(R) : Tf (x) = 0},
which is a closed ideal. The local spectrum of TX at x is defined as

SpT (x) := hull(IT (x)) = {t ∈ R : f̂(t) = 0, ∀f ∈ IT (x)}.
For a closed subset Λ ⊂ R, the corresponding spectral subspace XT (Λ) is

XT (Λ) := {x ∈ X : SpT (x) ⊆ Λ}.
Clearly, all spectral subspaces of an admissible space are also admissible. Moreover,
it is known [Ped, Theorem 8.1.4-(iv), p.301] (see also [Hu, Prop. 1.2.6-(h)]) that the
Arveson spectrum of TX is the smallest closed subset Λ ⊂ R such that XT (Λ) = X.
This implies that

Sp(T |XT (Λ)) ⊆ Λ for all closed subsets Λ ⊆ R.(∗∗)

A very useful criterion for an element x ∈ X being in XT (Λ) is that Tf(x) = 0
for all f ∈ j(Λ), where j(Λ) is the ideal of all functions f ∈ L1(R) whose Fourier
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transform f̂ is compact and disjoint from Λ. For the proof, see the remark following
Definition 2.1 in [Ar] or [Hu, Proposition 1.2.6-(e)].

Let A with the domain D(A) be the infinitesimal generator of the strongly
continuous group TX (see [Paz]). Let g ∈ D(A). Then g is a.e. differentiable and
Ag = g′. Thus A coincides with the derivative in X.

Lemma 1. Let X be an admissible space and A be the infinitesimal generator of
TX . Then

Sp(TX) = iσ(A).

For τ ≥ 0, let B be the infinitesimal generator of the group obtained by restricting
TX to the spectral subspace XT ([−τ, τ ]). Then B is a bounded operator. Moreover,
for α ∈ R,

‖α+B‖X ≤ (α2 + τ2)1/2 · CX ,
where CX is the constant in Definition 1.

Proof. The proof of the spectral identity Sp(TX) = iσ(A) can be found in [Ev]
(see also [Hu, Proposition 1.3.9] and [Jo]). Moreover, a result of Olesen [Ol] (or see
Corollary 3.3 in [N-H]) asserts that A is bounded if and only if σ(A) is bounded.

Consider the infinitesimal generator B. Combining (∗∗) with the previous spec-
tral identity we have

σ(iB) = iσ(B) = Sp(T |XT ([−τ,τ ])) ⊆ [−τ, τ ].

Therefore, B is bounded. Note that each Tt is an isometry under the new norm

|||x||| := sup{‖Ttx‖ : t ∈ R}, x ∈ X.

The operator iB is hermitian with respect to this new norm. Thus, by Sinclair’s
formula (∗) we have

|||iα+ iB||| = r(iα + iB) ≤ (α2 + τ2)1/2

for all α ∈ R. This implies the desired result.

We call a function g ∈ L1
loc(R) subexponential if∫ ∞

−∞
e−δ|t||g(t)| dt < +∞ for all δ > 0.

The Carleman transform of a subexponential function g is defined as (see [Hu,
Chap. IV] and [Ka, p.179])

g̃(λ) :=

{ ∫∞
0
eiλtg(t) dt, Imλ > 0,

−
∫ 0

∞ e
iλtg(t) dt, Imλ < 0.

Our main result goes as follows.

Theorem 1. Let X be an admissible space and g an entire function of exponential
type τ ≥ 0. Assume that the restriction gR of g to the real axis is subexponential
and belongs to X. Then, the derivative g′R is also in X and

‖αgR + g′R‖X ≤ (α2 + τ2)1/2 · CX · ‖gR‖X
for all α ∈ R, where CX is the constant in Definition 1.
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Proof. By Lemma 1 we need only check that the function gR belongs toXT ([−τ, τ ]).
This will be achieved in two steps.

Step 1. Let

g(z) =
∞∑
n=0

an
zn

n!
, z ∈ C,

be the series expansion of the entire function g around the point z = 0. For n ≥ 1,
we have by Cauchy’s formula that

an
n!

=
1

2πi

∫
|z|=n/τ

g(z)

zn+1
dz.

So,

|an| ≤
τn · n!

nn
M(n/τ),

where M(·) is the maximum modulus of g. Using Stirling’s formula [Bo, p.6]

n! = nne−n(2πn)1/2eδn/(12n), 0 < δn < 1,

we have

lim sup
n→∞

|an|1/n ≤
τ

e
· lim sup
n→∞

M(n/τ)1/n = τ.

This implies that the convergence radius of the series
∑∞
n=0 anz

n is greater than or
equal to 1/τ. Thus, by computing the Carleman transform of gR we obtain

g̃(λ) =
∞∑
n=0

an(−iλ)−n−1 for all λ /∈ R with |λ| > τ.

So, g̃(λ) can be extended holomorphically to the region |λ| > τ. By considering the
left translations gs we find that all functions g̃s(λ) can be extended holomorphically
to the region |λ| > τ.

Step 2. Let f ∈ j([−τ, τ ]). Then, f̂ ∈ L1(R). By the inverse formula for the
Fourier transform

f(t) =
1

2π

∫
R
f̂(r)eitr dr a.e.

It follows that f is equal a.e. to a continuous bounded function. Moreover, since
suppf̂ ∩ [−τ, τ ] = ∅, we can find τ < τ1 < τ2 such that

suppf̂ ⊆ [−τ2,−τ1] ∪ [τ1, τ2].

For n ∈ N, let

hn :=

∫ ∞
−∞

e−|t|/nTt(g)f(t) dt.

Then,

lim
n→∞

‖Tf(g)− hn‖X = 0.
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For fixed n we obtain by the boundedness and the above representation of f that

hn(s) =

∫ ∞
−∞

f(t)e−|t|/ngs(t) dt

=

∫ ∞
−∞

[
1

2π

∫ ∞
−∞

f̂(r)eirt dr

]
e−|t|/ngs(t) dt

=
1

2π

∫ ∞
−∞

f̂(r)

[∫ ∞
−∞

eirt−|t|/ngs(t) dt

]
dr (by Fubini’s theorem)

=
1

2π

∫ ∞
−∞

f̂(r)
[
g̃s(r + i/n)− g̃s(r − i/n)

]
dr

=
1

2π

(∫ −τ1
−τ2

+

∫ τ2

τ1

)
f̂(r)

[
g̃s(r + i/n)− g̃s(r − i/n)

]
dr.

As seen in Step 1, the function g̃s(λ) has a holomorphic extension to the region
|λ| > τ. This implies that the last term in the above equality goes to zero as n→∞.
Hence,

lim
n→∞

hn(s) = 0 for all s ∈ R.

By Definition 1-(i) there exists a subsequence (hnk) such that

Tf (g)(s) = lim
k→∞

hnk(s) = 0 a.e.

Consequently, Tf (g) = 0 and thus

Tf (g) = 0 for all f ∈ j([−τ, τ ]).

By the above mentioned criterion we see that gR ∈ XT ([−τ, τ ]). This finishes the
proof.

The following consequence extends Theorem 1 and can be applied to derive some
useful inequalities involving mean values, which we will give in the next section.

Theorem 2. Let X be an admissible space with the constant CX and g be an entire
function of exponential type τ whose restriction gR to the real axis belongs to X.
Assume N(·) to be a translation-invariant continuous semi-norm on X; i.e., for
some constant D > 0 there holds:

N(f t) = N(f) and N(f) ≤ D‖f‖X for all f ∈ X, t ∈ R.
Then,

N(αgR + g′R) ≤ CX · (α2 + τ2)1/2N(gR) for all α ∈ R.

Proof. For r > 0 consider

‖f‖r := r‖f‖X +N(f), f ∈ X.
By our assumptions on N(·), ‖ ·‖r is a new norm on X which is equivalent to ‖ ·‖X .
This implies that the space (X, ‖ · ‖r) is admissible. Moreover, for t ∈ R and f ∈ X

‖Ttf‖r = r‖Ttf‖X +N(f) ≤ CX(r‖f‖X +N(f)).

It follows that ‖Tt‖r ≤ CX and thus by Theorem 1

r‖αgR + g′R‖+N(αgR + g′R) ≤ CX(α2 + τ2)1/2(r‖gR‖X +N(gR))

for all α ∈ R and all r > 0. By letting r → 0 we obtain the desired result.
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2. The corollaries

We observe that the restriction to the real axis of an entire function of exponential
type zero is automatically subexponential. So, as an immediate consequence of
Theorem 1 we have the following.

Corollary 1. Let g be an entire function of exponential type zero. If the restriction
of g to the real axis belongs to some admissible space, then g is constant.

In what follows we will first construct more admissible spaces and then derive the
corresponding consequences of Theorem 1 and Theorem 2. Recall from [L-T, p.120]
that a function M(·) on [0,∞) is called an Orlicz function if M(·) is unbounded,
continuous, nondecreasing and convex, and satisfies M(0) = 0. The Orlicz space
LM(R) is the space of all measurable functions f on R such that∫ ∞

−∞
M(|f(t)|/ρ) dt <∞

for some ρ > 0. The norm in LM(R) is defined by

‖f‖M := inf{ρ > 0 :

∫ ∞
−∞

M(|f(t)|/ρ) dt ≤ 1}.

An Orlicz function M(·) is said to satisfy the ∆2-condition both at 0 and at ∞ if

lim sup
t→0

M(2t)/M(t) <∞ and lim sup
t→∞

M(2t)/M(t) <∞.

Equivalently, M(·) satisfies the ∆2-condition both at 0 and at∞ if and only if there
exists a constant K > 0 such that

M(2t) ≤ KM(t) for all t ≥ 0.(∗ ∗ ∗)

Let M(·) be an Orlicz function satisfying (∗ ∗ ∗). Then, it is easily verified that the
linear span of all simple functions is dense in LM(R). Consequently,∫ ∞

−∞
M(|f(t)|/ρ) dt <∞ for all f ∈ LM(R) and ρ > 0.

Using this observation one can further verify that LM(R) is an admissible space
with constant CLM (R) = 1. Let T > 0 be such that M(T ) > 1. Consider f ∈ LM(R).
Let

C :=

∫ ∞
−∞

M(|f(t)|) dt <∞.

Then, the measure of the set {t : |f(t)| ≥ T} is bounded by C. So, every function
in LM (R) is subexponential.

Assume now f to be an entire function of exponential type τ such that its
restriction in R belongs to LM(R), where M(·) is an Orlicz function satisfying
(∗ ∗ ∗). Let

a :=

∫ ∞
−∞

M(|f(t)|) dt <∞.

We may assume a > 0. Consider

N(t) := M(t)/a, t ≥ 0.
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Then, N(·) preserves the properties of M(·). Moreover, since the set of zeros of f
in the real axis is discrete and M(·) is unbounded and nondecreasing, we have

f ∈ LN (R) and ‖f‖N = 1.

Theorem 1 applies to f and yields

‖αfR + f ′R‖N ≤ (α2 + τ2)1/2‖fR‖N = (α2 + τ2)1/2, α ∈ R.

Equivalently, for all α ∈ R∫ ∞
−∞

M
(
|αf(t) + f ′(t)|/

√
α2 + τ2

)
dt ≤ a =

∫ ∞
−∞

M(|f(t)|) dt.

This inequality can be extended by approximation to any nondecreasing convex
function M(·). Therefore, we have proved the following result which covers Theorem
11.3.3 in [Bo, p.211] obtained by the Complex Analysis method.

Corollary 2. If f is an entire function of exponential type τ, M(·) a nondecreasing
convex function on [0,∞), then∫ ∞

−∞
M
(
|αf(t) + f ′(t)|/

√
α2 + τ2

)
dt ≤

∫ ∞
−∞

M(|f(t)|) dt

for all α ∈ R.

To find applications of Theorem 2, let g be an entire function of exponential type
τ whose restriction to the real axis is bounded. By the above cited Bernstein theo-
rem we see that the derivative g′R is also bounded. This implies that the restriction
gR is bounded and uniformly continuous, i.e., gR belongs to the admissible space
BUC(R). LetN(·) be any translation-invariant continuous semi-norm on BUC(R).
Note that CBUC(R) = 1. Then, Theorem 2 applies and yields that

N(αgR + g′R) ≤ (α2 + τ2)1/2N(gR) for all α ∈ R.

From this result one can derive many interesting inequalities, which have not been
obtained by the Complex Analysis method. For the first example we take N0(·) to
be the semi-norm given by

N0(f) := lim sup
t→+∞

|f(t)|, f ∈ BUC(R).

The above inequality corresponding to N0(·) reads as follows:

lim sup
t→+∞

|αg(t) + g′(t)| ≤ (α2 + τ2)1/2 lim sup
t→+∞

|g(t)|, α ∈ R.

This variant of Duffin-Schaeffer’s inequality gives the relation between the asymp-
totic behavior at infinity of functions and their derivatives. Such a result seems to
be new.

For the second example we take M(·) to be an Orlicz function on [0,∞) with
M(0) = 0. Define

ωM (f) := lim sup
T→+∞

1

2T

∫ T

−T
M(|f(t)|) dt, f ∈ BUC(R),

and

NM(f) := inf{ρ > 0 : ωM(f/ρ) ≤ 1}, f ∈ BUC(R).
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It is easily verified that NM(·) is a translation-invariant semi-norm. Let D > 0 be
such that M(D−1) ≤ 1. Then, for f ∈ BUC(R) we have

M(|f(t)|/(D · ‖f‖∞)) ≤M(D−1) ≤ 1,

ωM (f/(D · ‖f‖∞)) ≤ 1 and NM (f) ≤ D‖f‖∞.
Theorem 2 is applicable to NM(·) with the above function g and yields that

NM (αgR + g′R) ≤ (α2 + τ2)1/2NM (gR) for all α ∈ R.
By a same procedure as in the proof of Corollary 2 we find from above that

ωM
(

(αgR + g′R)/
√
α2 + τ2

)
≤ ωM(gR) for all α ∈ R.

Furthermore, it can be extended through approximation to any nondecreasing con-
vex function M(·). By taking α = 0 we have

ωM(g′R/τ) ≤ ωM (gR).

This inequality corresponds to Theorem 11.3.3 in [Bo, p.211]. For the moment we
collect these results as follows.

Corollary 3. Let g be an entire function of exponential type τ, which is bounded
in the real axis.Then, for all α ∈ R,

lim sup
t→+∞

|αg(t) + g′(t)| ≤ (α2 + τ2)1/2 lim sup
t→+∞

|g(t)|.

Moreover, for any nondecreasing convex function M(·) on [0,∞) and any α ∈ R,

lim sup
T→+∞

1

2T

∫ T

−T
M

(
|αg(t) + g′(t)|√

α2 + τ2

)
dt ≤ lim sup

T→+∞

1

2T

∫ T

−T
M(|g(t)|) dt.

As another example we consider applications in the context of almost periodic
functions. Recall that a continuous function h on R is called almost periodic
(a.p.) if the set {ht : t ∈ R} of all all translates of h is relatively compact in C(R)
(see [Ka, pp. 155-169]). Denote by AP (R) the Banach space of all a.p. functions
on R with the supremum norm. It is known that an a.p. function is uniformly
continuous. Therefore, AP (R) is a translation-invariant subspace of the admissible
space BUC(R) and hence it is also admissible. In the previous section we have
defined the local spectrum SpT (h) for each h ∈ AP (R). There is another spectral
notation for a.p. functions, called the Bohr spectrum, which is defined as follows.
Note that for each a.p. function h the limit

M(h) := lim
T→+∞

1

2T

∫ T

−T
h(t) dt

exists. The Bohr spectrum ΛB(h) of h is defined as the set of all ξ ∈ R such that
M(h(t)e−iξt) 6= 0. This is a countable set. It is shown in [Hu, Proposition 4.3.10]
that the closure of ΛB(h) is equal to the local spectrum SpT (h).

Assume that h is a.p. and its Bohr spectrum is contained in the finite interval
[−τ, τ ]. Then, h ∈ AP (R)T ([−τ, τ ]). As seen in Lemma 1, the operator B obtained
by restricting the derivative to the spectral subspace AP (R)T ([−τ, τ ]) is a bounded
operator with norm ‖B‖ ≤ τ. We have

ht = Tth = etBh, t ∈ R.
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Consider the function

H(z) := (ezBh)(0), z ∈ C.

Then, H(z) is an entire function and h(t) = H(t) for all t ∈ R. Note that

|H(z)| ≤ ‖ezBh‖∞ ≤ e‖zB‖ · ‖h‖∞ ≤ eτ |z| · ‖h‖∞.
We find that H(z) is an entire function of exponential type not exceeding τ. By
applying Corollary 3 to H(z) we obtain the following result.

Corollary 4. Let h ∈ AP (R) be such that its Bohr spectrum is contained in the
finite interval [−τ, τ ]. Then, h can be extended to an entire function of exponential
type not exceeding τ. Moreover, for any nondecreasing convex function M(·) on
[0,∞) and any α ∈ R,

lim sup
T→+∞

1

2T

∫ T

−T
M

(
|αh(t) + h′(t)|√

α2 + τ2

)
dt ≤ lim sup

T→+∞

1

2T

∫ T

−T
M(|h(t)|) dt.

The subsequent construction of admissible spaces through Peetre’s interpolation
method [Pee] (see also [L-T, pp. 216-232] and [B-L]) gives many Bernstein type
inequalities which have not been derived by the Complex Analysis method in [Bo].
To begin, let X1, X2 be admissible spaces. The space X1 +X2 is normed by

‖z‖X1+X2 := inf{‖x1‖X1 + ‖x2‖X2 : z = x1 + x2}.
The space X1 ∩X2 is normed by

‖z‖X1∩X2 := max{‖z‖X1, ‖z‖X2}.
It is easily verified that both of the spaces X1 + X2 and X1 ∩ X2 are admissible
Banach spaces. In general, for every a > 0, b > 0 let k(·, a, b) be the equivalent
norm on X1 +X2 defined by

k(z, a, b) := inf{a‖x1‖X1 + b‖x2‖X2 : z = x1 + x2}.
We have

C(X1+X2,k(·,a,b)) ≤ max(CX1 , CX2).

Let, in addition, Y be a Banach space with a normalized unconditional basis
{yn}∞n=1 whose unconditional constant is one. Let a := {an}∞n=1 and b := {bn}∞n=1

be sequences of positive numbers such that
∑∞
n=1 min(an, bn) < ∞. The space

K(X1, X2, Y,a,b), resp. K̃(X1, X2, Y,a,b), is defined to be the space of
all functions z ∈ X1 + X2 such that

∑∞
n=1 k(z, an, bn)yn converges, resp.

{
∑m
n=1 k(z, an, bn)yn : m ∈ N} is bounded, and normed by

‖z‖K(X1,X2) = ‖z‖K̃(X1,X2) := sup
m

∥∥∥∥∥
m∑
n=1

k(z, an, bn)yn

∥∥∥∥∥
Y

.

They satisfy

X1 ∩X2 ⊂ K(X1, X2, Y,a,b) ⊂ K̃(X1, X2, Y,a,b) ⊂ X1 +X2.

Moreover, since X1 +X2 is admissible one can prove that K(X1, X2, Y,a,b) is also
admissible and

CK(X1,X2) ≤ max(CX1 , CX2).
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Corollary 5. Let K̃(X1, X2, Y,a,b) be an interpolation space given as above. If g
is an entire function of exponential type τ such that its restriction to the real axis
belongs to K̃(X1, X2, Y,a,b), then its derivative is also in K̃(X1, X2, Y,a,b) and,
for all α ∈ R,

‖αgR + g′R‖K(X1,X2) ≤ (α2 + τ2)1/2 ·max(CX1 , CX2) · ‖gR‖K(X1,X2).

Moreover, if the restriction gR is in the admissible subspace K(X1, X2, Y,a,b), then
so is the derivative g′R.

Proof. We only need to check the estimate of the norm. Since the space X1 +X2

is admissible, we find by Theorem 1 that both of the restrictions in the real axis gR
and g′R are in X1 +X2. Let n ∈ N. Then,

C(X1+X2,k(·,an,bn)) ≤ max(CX1 , CX2).

Fix α ∈ R. By Theorem 1 again,

k(αgR + g′R, an, bn) ≤ (α2 + τ2)1/2 ·max(CX1 , CX2) · k(gR, an, bn).

Since the basis {yn}∞n=1 is unconditional with constant one, the above implies that

‖αgR + g′R‖K(X1,X2) ≤ (α2 + τ2)1/2 ·max(CX1 , CX2) · ‖gR‖K(X1,X2),

proving the result.

A special case of Peetre’s interpolation spaces is Lions-Peetre’s interpolation
spaces [X1, X2]θ,p for 0 < θ < 1 and 1 ≤ p ≤ ∞, see [L-P]. It is shown in
[L-P] (see also [L-T, Theorem 2.g.18, p.228]) that the space [Lp1(R), Lp2(R)]θ,q
with 1 ≤ p1 < p2 < ∞, 0 < θ < 1, 1 ≤ q ≤ ∞ is equal, up to an equivalent
norm, to the Lorentz space Lp,q(R) (see [L-T, p.142] for the definition), where
1/p = (1− θ)/p1 + θ/p2. Thus, our Corollaries 1 and 4 apply to the spaces Lp,q(R),
where 1 < p <∞, 1 ≤ q <∞. Now, a consequence of Corollary 1 reads as follows:
If g is an entire function of exponential type zero such that its restriction to the real
axis belongs to Lp,q(R) for some 1 < p < ∞ and 1 ≤ q < ∞, then g is a constant.
Such results involving the estimate of the distribution function of an entire function
seem to be new.

3. Comments and discussions

We first remark that Theorems 1 and 2 and their consequences can be extended to
vector-valued entire functions taking values in a Banach space X. The admissibility
of a translation-invariant subspace E(X) of the locally Bochner integrable space
L1
loc(R, X) can be defined similarly as in Definition 1. We note that the Banach

function spaces E(X) which are admissible in the sense of [R-S] are also admissible
in our sense.

One important tool used by Boas and Levin in their books to derive the Bern-
stein type inequalities is the Paley-Wiener theorem, which can be proved by the
Plancherel theorem (see [Bo, pp. 105-106]). We would like to make the reader
aware that in our proof the Plancherel theorem is also used in an implicit way.
Namely, the regularity of the group algebra L1(R) is involved in the spectral the-
ory of Arveson and for the proof of the regularity of L1(R) one should use the
Plancherel theorem, see [Lo, Corollary, p.146]. Our method of deriving Bernstein
type inequalities is different from the Complex Analysis method of Boas [Bo] and
Levin [Le], and the results are more general. In a subsequent paper, using the same
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idea, we will derive Bernstein type inequalities for entire functions of exponential
type whose restriction to the real axis belongs to so-called rearrangement-invariant
spaces defined on R. On such a space the translation group is generally not strongly
continuous, but we can use the spectral theory that has been recently established
in [Hu].
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Tübingen, F. R. Germany

E-mail address: huse@michelangelo.mathematik.uni-tuebinegn.de


