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Abstract. Let (R,m) be a two-dimensional regular local ring and I an m-
primary integrally closed ideal in R. In this paper, we give equivalent condi-
tions for I to be a product of distinct simple m-primary integrally closed ideals
(i.e., I = I1 · · · Il, where I1, · · · , Il are distinct simple m-primary integrally

closed ideals of R) in terms of the regularity of R[It]/p for all p ∈ Min(mR[It])
and in terms of how to choose a minimal generating set for I over its minimal
reductions.

1. Introduction

Throughout this paper, (R,m, k) will denote a 2-dimensional regular local ring
with residue field k and with quotient field K. Let I be an m-primary inte-
grally closed ideal in (R,m, k). By Zariski’s Unique Factorization Theorem, I =
Iµ1

1 · · · I
µl
l , µi ≥ 1, where I1, · · · , Il are distinct simple m-primary integrally closed

ideals in (R,m, k). In [2], Huneke and Sally showed that if I is a simple m-primary
integrally closed ideal in (R,m, k), then R[It]/p is regular, where p = Min(mR[It]).
We extend this result to the case of an integrally closed ideal which is the product
of distinct simple integrally closed ideals. To wit, we prove that µi = 1 for all
i = 1, · · · , l if and only if R[It]/pi is regular for all pi ∈ Min(mR[It]). Let vi be the
valuation of R[It]pi ∩K for all pi ∈ Min(mR[It]). We shall show that the following
conditions are equivalent:

(1) R[It]/pi is regular for all pi ∈Min(mR[It]).
(2) For any reduction (a, b) of I, there exist elements ci1 , · · · , cin in I such that

a, b, ci1 , · · · , cin is a minimal generating set of I and vi(cij ) > vi(a) = vi(b)
for i = 1, · · · , l and j = 1, · · · , n.

(3) There exist a reduction (a, b) of I and elements ci1 , · · · , cin in I such that
a, b, ci1 , · · · , cin is a minimal generating set of I and vi(cij ) > vi(a) = vi(b)
for i = 1, · · · , l and j = 1, · · · , n.

This paper is divided into three sections. Section 2 deals with some preliminary
facts. In section 3, we shall prove our main theorems.

2. Preliminaries

Throughout this paper, all rings are assumed to be commutative with identity.
By a local ring (A,n), we mean a Noetherian ring A which has a unique maximal
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ideal n. By dim(A) we always mean the Krull dimension of A. A regular local ring
(A,n) is a local ring whose maximal ideal can be generated by d = dim(A) elements.
We will use the abbreviation RLR for regular local ring. Recall that an ideal is
simple if it is not the unit ideal and has no nontrivial factorization. An element
a ∈ A is said to be integral over an ideal I of A if a satisfies an equation of the
form

an + r1a
n−1 + · · ·+ rn = 0, ri ∈ Ii.

The set of all elements in A which are integral over an ideal I forms an ideal, denoted
by I and called the integral closure of I. An ideal I is said to be integrally closed

(or equivalently “complete”) if I = I.
Let (A,n) be a local ring and I an ideal of A. An ideal J contained in I is

called a reduction of I if JIs = Is+1 for some integer s ≥ 0. A reduction J of I is
called a minimal reduction of I if J is minimal with respect to being a reduction
of I. D. Northcott and D. Rees proved that if A/n is infinite, then any minimal
generating set for a minimal reduction of an ideal I is analytically independent
([6, Lemma 2, p. 149]). We will use the notation λA(M) (or simply λ(M)) to
denote the length of M as an A-module, µ(I) to denote the number of elements in
a minimal basis of an ideal I in A (i.e., µ(I) = λ(I/nI)), and e(A) to denote the
multiplicity of the maximal ideal n of A. The order o(I) of an ideal I of a local

ring (A,n) is r if I ⊆ nr but I 6⊆ nr+1. We refer the reader to [4], [1], [2], or [7] for
any unexplained notation or terminology.

Let A be a Noetherian domain with quotient field L, and let I be an ideal of
A. Let A[It, t−1] be the integral closure of A[It, t−1] in the quotient field L(t), and

let {Q1, · · · , Qn } be all the minimal primes of (t−1)A[It, t−1]. Then A[It, t−1] is

a Krull domain and each Qi is a height one prime, and hence
(
A[It, t−1]

)
Qi

is a

discrete valuation ring of L(t) for i = 1, · · · , n. The Rees valuation rings of I are{(
A[It, t−1]

)
Q
∩ L | Q ∈ Min

(
(t−1)A[It, t−1]

)}
.

The set of corresponding discrete valuations of these Rees valuation rings of I are
called the set of Rees valuations of I and denoted by T (I), i.e.,

T (I) =

{
v | v is the valuation of (A[It, t−1])Q ∩ L,

Q ∈Min((t−1)A[It, t−1])

}
.

In a d-dimensional local domain (A,n, l) with quotient field L, by a prime divisor of
the second kind on A (or equivalently prime divisor of (A,n)) we mean a discrete
valuation v of L on A which is non-negative on A and has center n on A and whose
residual transcendence degree (denoted by tr.deglk(v)) is d − 1. We denote the
residue field of the valuation ring of the valuation v by k(v).

Concerning the structure of the integrally closed ideal in a 2-dimensional RLR
(R,m, k), O. Zariski proved the following beautiful theorems which are the main
background for this paper.

Theorem 2.1. (Zariski’s Unique Factorization Theorem: [7, Appendix 5, Theo-
rem 3]). Every integrally closed ideal of (R,m, k) can be uniquely factored into the
product of simple integrally closed ideals (up to order).
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Theorem 2.2 (Zariski’s Product Theorem: [7], Appendix 5, Theorem 2). The
product of integrally closed ideals in (R,m, k) is again integrally closed.

Theorem 2.3. (Zariski’s One-to-One Correspondence Theorem: [7, Appendix 5,
Theorem E]). The simple m-primary integrally closed ideals of (R,m, k) are in
one-to-one correspondence with the prime divisors of the second kind on (R,m, k).

Let I be an m-primary integrally closed ideal in (R,m, k). Then all the powers
of I are integrally closed by Zariski’s Product Theorem, hence the set of Rees
valuations of I is

T (I) =
{
v | v is the valuation of

(
R[It, t−1]

)
Q
∩K,

Q ∈ Min
(
(t−1)R[It, t−1]

)}
=
{
v | v is the valuation of

(
R[It]

)
p
∩K, p ∈Min

(
mR[It]

)}
=
⋃
a6=0
a∈I

{
v | v is the valuation of

(
R[I/a]

)
q
, q ∈ Min

(
aR[I/a]

)}
.

By Zariski’s Unique Factorization Theorem, I = Iµ1

1 · · · I
µl
l , µi ≥ 1, where I1, · · · , Il

are distinct simple m-primary integrally closed ideals in R. By Zariski’s One-to-
One Correspondence Theorem, if Min(mR[It]) = { p1, · · · , pr }, then r = l and
upon reordering, vi is the discrete valuation of R[It]pi ∩K, where vi is the prime
divisor associated to Ii for i = 1, · · · , l.
Remarks 2.4. (1) Let I be an m-primary integrally closed ideal in (R,m, k), and
let p be any minimal prime of mR[It]. Then p is a homogeneous prime ideal of
ht(p) = 1. Since N = (m, It) is the unique maximal homogeneous ideal in R[It]
and p ⊇ mR[It], the piece of degree 0 in p is m. Hence R[It]/p is a 2-dimensional
graded domain over the field k.

(2) Let k be a field and A = k[a1, · · · , ad], where a1, · · · , ad ∈ A. Define the
canonical homomorphism φ from k[X1, · · · , Xd] onto A with φ(Xi) = ai for i =
1, · · · , d where X1, · · · , Xd are variables. If dim(A) = d ≥ 1, then A is a polynomial
ring in d-variables over k, since the kernel of φ is zero.

Lemma 2.5. Let G = k[G1] = G0 ⊕ G1 ⊕ G2 ⊕ · · · , where G0 = k, be a d-
dimensional graded homogeneous Noetherian domain over a field k, d ≥ 1. Then G
is regular if and only if G is a polynomial ring in d-variables over the field k.

Proof. (⇐) : This is clear.
(⇒) : Suppose that G is regular. Let N = G1G be the unique homogeneous

maximal ideal in G. Hence GN is a d-dimensional RLR since ht(N) = d. We
can choose elements a1, · · · , ad in G1 such that NGN = (a1, · · · , ad)GN . Let
µ(N) = n ≥ d. Then we can choose elements ad+1, · · · , an in G1 such that
N = (a1, · · · , ad, ad+1, · · · , an)G.

Claim. N = (a1, · · · , ad)G.
⊇ : This is clear.
⊆ : For i = d+ 1, · · · , n, we can express

ai = a1 ·
(
gi1/αi1

)
+ · · ·+ ad ·

(
gid/αid

)
,

where gi1 , · · · , gid ∈ G and αi1 , · · · , αid /∈ N . Express gij = uij +hij , where uij ∈ k
and hij ∈ N for j = 1, · · · , d. Considering the degree of each term, hij = 0 for
j = 1, · · · , d. Hence we have ai ∈ (a1, · · · , ad)k ⊆ (a1, · · · , ad)G for i = d+1, · · · , n.
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ThereforeG = k[a1, · · · , ad] is a polynomial ring in d-variables over k by Remarks
2.4 (2).

3. Factorization of an integrally closed ideal

Theorem 3.1. Let I be an m-primary integrally closed ideal in (R,m, k). Assume
that Min(mR[It]) = { p1, · · · , pl } and that k is an algebraically closed field. Then
the following conditions are equivalent :

(1) R[It]/pi is regular for i = 1, · · · , l.
(2) I = I1 · · · Il, where I1, · · · , Il are distinct simple m-primary integrally closed

ideals in R.

Proof. Let T (I) = { v1, · · · , vl } be the Rees valuations of I. Then, by Theorem
2.1 and Theorem 2.3, we can write I = Iµ1

1 · · · I
µl
l , where Ii is a simple m-primary

integrally closed ideal in R associated to vi for i = 1, · · · , l.
Let S = R[It] and N = (m, It)S be the unique maximal homogeneous ideal in

S. Then I/mI⊕ I2/mI2⊕· · · , denoted by N , is the unique maximal homogeneous
ideal in S/mS. Let T =

(
S/mS

)
N

. By Corollary 3.4 in [2] and Corollary 3.2 in
[1], we have

e(T ) = o(I).(∗)

Since Min(mS) = { p1, · · · , pl } and N is the unique maximal homogeneous ideal
in S, Min(S/mS) = { p̄1, · · · , p̄l }, where p̄i denotes the image of pi in S/mS and
dim

(
(S/pi)N

)
= 2 for i = 1, · · · , l. Hence the associativity formula ([4, Theorem

14.7]) gives the following:

e(T ) =
l∑
i=1

e
(
(N/pi)N , (S/pi)N

)
· λ
(
(S/mS)pi

)
.(∗∗)

(1) ⇒ (2) : Suppose that S/pi is regular for i = 1, · · · , l. From (∗∗), we have

e(T ) =
l∑
i=1

λ
(
(S/mS)pi

)
=

l∑
i=1

vi(m)

=
l∑
i=1

o(Ii) ([3], Proposition 21.4)

= o(I1 · · · Il)
≤ o(I).

From (∗), we have o(I) = o(I1 · · · Il). This implies that I = I1 · · · Il since I1 · · · · · Il
divides I.

(2) ⇒ (1) : Suppose that I = I1 · · · Il, where I1, · · · , Il are distinct simple m-
primary integrally closed ideals in R. By Proposition 21.4 in [3], we have

o(I) =
l∑
i=1

o(Ii) =
l∑
i=1

vi(m).
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Using (∗) and (∗∗), we have

l∑
i=1

vi(m) =
l∑
i=1

e
(
(S/pi)N

)
· vi(m).

Hence

l∑
i=1

vi(m)
[
e
(
(S/pi)N

)
− 1
]

= 0.

Since vi(m) > 0 and e
(
(S/pi)N

)
≥ 1 for each i = 1, · · · , l, we have e

(
(S/pi)N

)
= 1

for i = 1, · · · , l. S is a Cohen-Macaulay ring by Theorem 3.2 in [2], and hence
(S/pi)N is unmixed for i = 1, · · · , l which implies that (S/pi)N is a RLR for
i = 1, · · · , l ([5, Theorem 40.6]). Therefore S/pi is regular for i = 1, · · · , l.

Corollary 3.2 ([2], Theorem 3.8). Assume that k is an algebraically closed field.
Let I be a simple m-primary integrally closed ideal in (R,m, k). If Min(mR[It]) =
{p}, then R[It]/p is regular.

We remark that the statement of Theorem 3.1 is not true in general if the product
of distinct simple ideals is replaced by the product of powers of simple ideals. For
example, let R = k[x, y](x,y) with an algebraically closed field k and m = (x, y)R.

Let I = m2. Then the set of Rees valuations of I is {o}, where o is the order
valuation of R. In R[mt], we have o(t−1) = o(m) = 1. Since R[m2t2] is a subring of
R[mt], o(t2) = −2 in R[m2t2]. Since R[m2t] is isomorphic to R[m2t2], o(t) = −2 in
R[m2t]. In R[m2t], o(x2t) = o(xyt) = o(y2t) = 0. Hence x2t, xyt and y2t are not
in p, where {p} = Min(mR[m2t]). So we have R[m2t]/p ∼= k[X, Y, Z]/(Z2 −XY ),
where X, Y, Z are variables, which is a 2-dimensional normal domain, but not
regular.

Without the assumption that the residue field k is algebraically closed, we give
in Theorem 3.3 some equivalent conditions in order that R[It]/pi be regular for
i = 1, · · · , l, which deal with the generating set for I over a minimal reduction.

Theorem 3.3. Let I be an m-primary integrally closed ideal in (R,m, k). Assume
that Min(mR[It]) = {p1, · · · , pl}. Let vi be the valuation of R[It]pi ∩ K for i =
1, · · · , l. Then the following conditions are equivalent :

(1) R[It]/pi is regular for i = 1, · · · , l.
(2) For any reduction (a, b) of I, there exist elements ci1 , · · · , cin in I such that

a, b, ci1 , · · · , cin is a minimal generating set of I and vi(cij ) > vi(a) = vi(b)
for i = 1, · · · , l and j = 1, · · · , n.

(3) There exist a reduction (a, b) of I and elements ci1 , · · · , cin in I such that
a, b, ci1 , · · · , cin is a minimal generating set of I and vi(cij ) > vi(a) = vi(b)
for i = 1, · · · , l and j = 1, · · · , n.

Proof. (2) ⇒ (3) : This is clear.
(3)⇒ (1) : Let Ji = (m, ci1t, · · · , cint) for i = 1, · · · , l be a homogeneous ideal in

R[It]. Since vi(cij ) > vi(a) = vi(b) for j = 1, · · · , n, we have vi(cij t) > vi(at) = 0.
Hence cij t ∈ pi for j = 1, · · · , n. Therefore we have Ji ⊆ pi for i = 1, · · · , l. Since
a, b, ci1 , · · · , cin is a minimal generating set of I for i = 1, · · · , l, we have

R[It]/Ji ∼= (R/m)[at, bt],
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where at, bt denote the homomorphic image of at, bt in R[It]/Ji. And

dim(R[It]/Ji) ≥ dim(R[It]/pi) = 2 for i = 1, · · · , l.

By Remarks 2.4(2), R[It]/Ji is a polynomial ring over k, and hence it is a domain
for i = 1, · · · , l. This implies that Ji = pi for i = 1, · · · , l. Moreover, R[It]/pi is
regular for i = 1, · · · , l.

(1) ⇒ (2) : Suppose that R[It]/pi is regular for i = 1, · · · , l. By Remarks
2.4(1) and Lemma 2.5, we have R[It]/pi ∼= k[X, Y ], where X and Y are variables
over k. Let J = (a, b) be any minimal reduction of I. Since a, b are analytically
independent, mR[Jt] is a homogeneous prime ideal in R[Jt], and hence mR[It] ∩
R[Jt] = mR[Jt]. Moreover, we have

dim
(
R[Jt]/pi ∩R[Jt]

)
= dim

(
R[It]/pi

)
= dim

(
R[Jt]/mR[Jt]

)
= 2.

Since pi ∩ R[Jt] and mR[Jt] are homogeneous prime ideals such that pi ∩R[Jt] ⊇
mR[Jt], we obtain pi ∩R[Jt] = mR[Jt] for i = 1, · · · , l. Hence we have

R[Jt]/pi ∩R[Jt] ∼= (R/m)[at, bt],

where at, bt denote the images of a, b in I/mI. Hence we have the following map
of homogeneous graded rings:

φ : (R/m)[at, bt] ↪→ R[It]/pi
( ∼= k[X, Y ]

)
,

which is integral. Then at, bt are mapped by φ to homogeneous polynomials of
degree 1 in k[X, Y ]. Let φ(at) = αX+βY and φ(bt) = uX+vY , where α, β, u, v ∈
k. It is not difficult to see that αX + βY and uX + vY are linearly independent
over k. By a suitable k-automorphism, we may assume that at goes to X and bt
goes to Y . It is clear that k[at, bt] = k[X, Y ]. Let µ(I) = n + 2. We can extend
(a, b) to a minimal generating set a, b, d1, · · · , dn of I. For each i = 1, · · · , l, let

ψi : R[at, bt, d1t, · · · , dnt] −→ R[It]/pi (∼= k[X, Y ] )

be a canonical map with ψi(at) = X and ψi(bt) = Y . Suppose that ψi(djt) =
sijX + rijY , where sij and rij are in k for j = 1, · · · , n. Let sij and rij be the
preimages of sij and rij in R. Replace cij by dj − sija − rij b for j = 1, · · · , n.
Then (a, b, ci1 , · · · , cin) = (a, b, d1, · · · , dn) is still a minimal generating set of I.
Moreover, ψi(cij t) = 0 for j = 1, · · · , n. Hence cij t ∈ pi for j = 1, · · · , n. Since
vi is the discrete valuation of R[It]pi ∩ K for i = 1, · · · , l, we have vi(cij t) > 0

for j = 1, · · · , n. Hence we have vi(cij ) > vi(t
−1) = vi(I) for j = 1, · · · , n and

i = 1, · · · , l. Finally, for each i = 1, · · · , l, we have vi(I) = vi(J) = vi(a) = vi(b),
since J = (a, b) is a reduction of I. The proof is complete.

Corollary 3.4. Let I, (R,m, k), { p1, · · · , pl }, and { v1, · · · , vl } be as in Theorem
3.3. Further, assume that k is algebraically closed. Then the following conditions
are equivalent :

(1) I = I1 · · · Il, where I1, · · · , Il are distinct simple m-primary integrally closed
ideals in R.

(2) For any reduction (a, b) of I and for all d ∈ I, there exist ri, si ∈ R such that
vi(d− ria− sib) > vi(I) for i = 1, · · · , l.

(3) There exists a reduction (a, b) of I such that for all d ∈ I, there exist ri, si ∈ R
such that vi(d− ria− sib) > vi(I) for i = 1, · · · , l.
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Proof. (2) ⇒ (3) : This is clear.
(3) ⇒ (1) : Assume that (3) is true. Then for each i = 1, · · · , l, we can extend

(a, b) to a minimal generating set a, b, di1 , · · · , din of I such that

vi(dij − rija− sij b) > vi(I),

where rij and sij are in R for j = 1, · · · , n. Replace dij by cij = dij − rija − sij b
for j = 1, · · · , n. Then a, b, ci1 , · · · , cin is still a minimal generating set of I, and
vi(cij ) > vi(a) = vi(b), since (a, b) is a reduction of I. By Theorem 3.3, I = I1 · · · Il,
where I1, · · · , Il are distinct simple m-primary integrally closed ideals in R.

(1) ⇒ (2) : Assume that (1) is true. By Theorem 3.3, for any reduction (a, b)
of I, there exist elements ci1 , · · · , cin in I such that a, b, ci1 , · · · , cin is a minimal
generating set of I and vi(cij ) > vi(a) = vi(b) for i = 1, · · · , l and j = 1, · · · , n.
Let d be an arbitrary element in I. If d ∈ { a, b, ci1, · · · , cin }, then it is not difficult
to see the required form. If d ∈ I\{ a, b, ci1, · · · , cin }, then we can express d =
ria+sib+

∑n
j=1 αij cij , where ri, si and αij are inR for j = 1, · · · , n and i = 1, · · · , l.

Hence we have

vi(d− ria− sib) = vi

 n∑
j=1

αijcij


≥ min
j=1,··· ,n

{
vi(αij cij )

}
≥ min
j=1,··· ,n

{
vi(cij )

}
> vi(a)

= vi(I).

Corollary 3.5 ([2], Lemma 3.7). Let v be a prime divisor of R with associated sim-
ple m-primary integrally closed ideal I in (R,m, k). Suppose that k is algebraically
closed. Then there exists a reduction (a, b) of I such that for all d ∈ I, there exist
s and r in R such that v(d− sa− rb) > v(I).
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