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Lp-NORM UNIFORM DISTRIBUTION

D. SONG AND A. K. GUPTA

(Communicated by Wei-Yin Loh)

Abstract. In this paper, the Lp-norm uniform distribution, which is a gener-
alization of the uniform distribution studied by Cambanis, Huang, and Simon
(1981), is defined for any p > 0. Then its marginal distributions and order
statistics are studied.

1. Introduction

The multivariate normal model is the earliest model derived and is the most
commonly used model even today. Most multivariate analysis techniques, e.g.
MANOVA, Multivariate Regression, Canonical Analysis, Discriminant Analysis,
and Factor Analysis, assume multivariate normal models which in practice may
not always be true. So people need richer families of models which may include
the normal distribution. As a generalization to the normal model, we have the
non-normal models such as spherical models. The Lp-norm spherical distribution
has proven useful in Bayesian analysis and robustness studies (e.g. see Kuwana and
Kariya [6]), and has also been used by Box and Tiao for the analysis of self- and
cross-fertilized data (see Box and Tiao [1]).

In this section, we derive the Lp-norm uniform distribution (p > 0), which
is used in constructing the Lp-norm spherical distribution. The Lp-norm uniform
distribution is developed from the p-generalized normal distribution (Goodman and
Kotz [4]) in the same way as the (L2-norm) uniform distribution was obtained from
the normal distribution (Cambanis, Huang, and Simons [2], and Muirhead [7]).

The following lemma will be needed to prove the result.

Lemma 1.1. Let x = (x1, x2, . . . , xn)′ (n ≥ 2) be an n-vector, x ∈ Rn\{0}. Con-
sider the transformation{

yi = xi/‖x‖p, i = 1, . . . , n− 1,

r = ‖x‖p,

where ‖x‖pp =
∑n
i=1 |xi|p and p > 0. If S1 = {(x1, . . . , xn) ∈ Rn : xn > 0} and

S2 = {(x1, . . . , xn) ∈ Rn : xn < 0}, then the Jacobians of the above transformation
in S1 and S2 are equal and are given by

J(x→ y1, . . . , yn−1, r)) = rn−1

(
1−

n−1∑
i=1

|yi|p
)(1−p)/p

.(1.1)
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Proof. Let

∆(yi) =

{
1, yi ≥ 0,

−1, yi < 0.

Then |yi| = ∆(yi)yi, i = 1, . . . , n− 1. In the region Si, i = 1, 2,, the transformation
is 1-1 and we have

xi = yir, i = 1, . . . , n− 1,

xn = sign(xn)r
(

1−
∑n−1
i=1 |yi|p

)1/p

= sign(xn)r
(

1−
∑n−1
i=1 [∆(yi)yi]

p
)1/p

.

Then the Jacobian of the transformation in Si, i = 1, 2, is

Ji(x→ y1, . . . , yn−1, r) = rn−1

(
1−

n−1∑
i=1

|yi|p
)1/p−1

.

Notice that J(x → y1, . . . , yn−1, r) does not depend on region S1 or S2, so we
complete the proof of the lemma.

Throughout this paper it is assumed that n ≥ 2 and p > 0. Now the derivation
of the Lp-norm uniform distribution follows.

Theorem 1.1. Let Xn = (X1, . . . , Xn)′, where the Xi’s are i.i.d. random variables
with p.d.f.

f(x) =
p1−1/p

2Γ(1/p)
e−|x|

p/p, −∞ < x <∞.

Let Ui = Xi/‖X‖p, i = 1, 2, . . . , n. Then
∑n
i=1 |Ui|p = 1 and the joint p.d.f. of

U1, . . . , Un−1 is

p(u1, . . . , un−1) =
pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

|ui|p
)(1−p)/p

,

− 1 < ui < 1, i = 1, 2, . . . , n− 1,
n−1∑
i=1

|ui|p < 1.

(1.2)

Proof. Let ui = xi/‖x‖p, i = 1, 2, . . . , n − 1, and r = ‖x‖p, where −1 < ui < 1,

i = 1, . . . , n− 1,
∑n−1
i=1 |ui|p < 1 and r > 0. Then the transformation is 1-1 in the

regions S1 = {(x1, . . . , xn) ∈ Rn : xn > 0} and S2 = {(x1, . . . , xn) ∈ Rn : xn < 0}.
According to Lemma 1.1, the Jacobian of the above transformation in Si, i = 1, 2,
is given by rn−1(1−

∑n−1
1 |ui|p)(1−p)/p. Since the p.d.f. of X1, . . . , Xn is

p(x1, . . . , xn) =
pn−n/p

2nΓn(1/p)
e−(1/p)

∑n
1 |xi|

p

, −∞ < xi <∞, i = 1, . . . , n,
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the p.d.f. of U1, . . . , Un−1 and R = ‖X‖p is

p(u1, . . . , un−1, r) =
pn−n/p

2n−1Γn(1/p)
rn−1e−r

p/p

(
1−

n−1∑
i=1

|ui|p
)(1−p)/p

,

− 1 < ui < 1, i = 1, . . . , n− 1,
n−1∑

1

|ui|p < 1, r > 0.

A straightforward computation will give the joint p.d.f. of U1, . . . , Un−1 to be

p(u1, . . . , un−1) =
pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

|ui|p
)(1−p)/p

,

− 1 < ui < 1, i = 1, . . . , n− 1,
n−1∑
i=1

|ui|p < 1.

This completes the proof of the theorem.

The random vector Un = (U1, . . . , Un)′ is said to be uniformly distributed on the
surface of the (Lp-norm) unit sphere Snp = {(x1, . . . , xn) ∈ Rn :

∑n
i=1 |xi|p = 1} in

Rn. Un will be said to have an Lp-norm uniform distribution, denoted by U(n, p).
It may be noted that for p = 2, U(n, p) becomes the L2-norm uniform distribution
studied by Cambanis, Huang, and Simon [2]. For related work one can refer to
Fang, Kotz and Ng [3], and Gupta and Varga [5].

2. Marginal distributions

The marginal densities of Un are derived in this section. However, first we give
a result on the Jacobian of a transformation.

Lemma 2.1. Let x1, x2, . . . , xn be n variables, defined on the whole real line. Let

yi = |xi|p, i = 1, . . . , n.

Then the Jacobian of this transformation in S(σ1, . . . , σn) = {(x1, . . . , xn) ∈ Rn :

sign(xi) = σi, i = 1, . . . , n} is 1
pn

∏n
i=1 y

1/p−1
i , where

σi =

{
1, if xi ≥ 0,

−1, if xi < 0,
i = 1, . . . , n.

Proof. Let yi = |xi|p, i = 1, . . . , n. Then the transformation in S(σ1, . . . , σn) is 1-1,

and xi = sign(xi)y
1/p
i , i = 1, . . . , n. Hence, the Jacobian in S(σ1, . . . , σn), σi = ±1,

i = 1, . . . , n, is∣∣∣∣∂(x)

∂(y)

∣∣∣∣ =
1

pn

n∏
i=1

y
1/p−1
i , 0 ≤ yi <∞, i = 1, . . . , n.
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Theorem 2.1. If Un = (U1, U2, . . . , Un)′ ∼ U(n, p), then
(1) the marginal density of (U1, . . . , Uk)′ (1 ≤ k ≤ n− 1) is

p(u1, . . . , uk) =
pkΓ(n/p)

2kΓk(1/p)Γ((n− k)/p)

(
1−

k∑
i=1

|ui|p
)(n−k)/p−1

,

− 1 < ui < 1, i = 1, . . . , k,
k∑
i=1

|ui|p < 1;

(2.1)

(2) (|U1|p, . . . , |Uk|p) ∼ Dk( 1
p , . . . ,

1
p ; n−kp ), where Dk(α1, . . . , αk;αk+1) is the

Dirichlet distribution with positive parameters α1, . . . , αk, αk+1; and
(3) |Ui|p ∼ Beta( 1

p ,
n−1
p ), i = 1, . . . , n, where Beta(α;β) is the Beta distribution

with parameters α > 0 and β > 0.

Proof. Part (1) is proven by induction. Let k = n − 1. Then the p.d.f. of
(U1, . . . , Un−1) according to Theorem 1.1 is

p(u1, . . . , un−1) =
pn−1Γ(n/p)

2kΓn(1/p)

(
1−

n−1∑
i=1

|ui|p
)(1−p)/p

,

− 1 < ui < 1, i− 1, . . . , n− 1,
n−1∑
i=1

|ui|p < 1.

Now, assume (2.1) is true for k. Then the marginal density of (U1, . . . , Uk−1)′ is
given by

p(u1, . . . , uk−1) =

∫ a

−a

pkΓ(n/p)

2kΓk(1/p)Γ((n− k)/p)

(
1−

k∑
i=1

|ui|p
)(n−k)/p−1

duk

=
pkΓ(n/p)

2k−1Γk(1/p)Γ((n− k)/p)

∫ a

0

(ap − upk)(n−k)/p−1dukwhere a =

(
1−

k−1∑
i=1

|ui|p
)1/p


=

pk−1Γ(n/p)

2k−1Γk−1(1/p)Γ((n− (k − 1))/p)

(
1−

k−1∑
i=1

|ui|p
)(n−(k−1))/p−1

,

− 1 < ui < 1, i = 1, . . . , k − 1,
k−1∑
i=1

|ui|p < 1,

which means (2.1) is also true for k−1. By induction, (2.1) is true for 1 ≤ k ≤ n−1.
This completes the proof of part (1).
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(2) Let Zi = |Ui|p, i = 1, 2, . . . , k. Then using the result of part (1) and the
Jacobian obtained from Lemma 2.1, we get the p.d.f. of (Z1, . . . , Zk) as

p(z1, . . . , zk)

=
∑

(σ1,...,σk)

pkΓ(n/p)

2kΓk(1/p)Γ((n− k)/p)

(
1−

k∑
i=1

zi

)
(n−k)/p−1

(
1

pk

k∏
i=1

z
1/p−1
i

)

=
Γ(n/p)

Γk(1/p)Γ((n− k)/p)

k∏
i=1

z
1/p−1
i

(
1−

k∑
i=1

zi

)(n−k)/p−1

,

0 < zi < 1, i = 1, . . . , k,
k∑
i=1

zi < 1,

which is the Dirichlet p.d.f., and hence

(|U1|p, . . . , |Uk|p)′ ∼ Dk

(
1

p
, . . . ,

1

p
;
n− k
p

)
.

(3) Let k = 1 in (2). Then we have |U1|p ∼ Beta( 1
p ,

n−1
p ). But from Theorem 2.1

we know that Ui is defined as Ui = Xi/
∑n
i=1 |Xi|p, i = 1, . . . , n, where the Xi’s

are i.i.d. random variables. Hence Ui
d
= U1, i = 1, . . . , n. Therefore,

|Ui|p d
= |U1|p ∼ Beta

(
1

p
,
n− 1

p

)
, i = 1, . . . , n.

3. Order statistics

Some properties of the order statistics of Un can be seen in this section.

Theorem 3.1. Let Un = (U1, . . . , Un)′ ∼ U(n, p). Then the following two results
hold.

(1) Y = (Y1, . . . , Yn−1)′ = (U(1), U(2), . . . , U(n−1))
′ has the p.d.f.

p(y1, . . . , yn−1) =
(n− 1)!pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

|yi|p
)(1−p)/p

,

− 1 < y1 < y2 < · · · < yn−1 < 1,
n−1∑
i=1

|yi|p < 1.

(3.1)

(2) The (n− 1)-dimensional random vector (W1, . . . ,Wn−1)′, where
W p

1 = (n− 1)|Y1|p,
W p

2 = (n− 2)|Y2|p − |Y1|p),
...

W p
n−1 = |Yn−1|p − |Yn−2|p,

(3.2)
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has the p.d.f.

p(w1, . . . , wn−1) =
(n− 1)!pn−1Γ(n/p)

p
√
n− 1Γn(1/p)

n−1∏
i=2

wp−1
i

n− i

i∑
j=1

(
wpj
n− j

)1/p−1


·
(

1−
n−1∑
i=1

wpi

)(1−p)/p

, 0 < wi < 1, i = 1, . . . , n− 1,
n−1∑
i=1

wpi < 1.

(3.3)

Proof. (1) Define yi = u(i), i = 1, . . . , n − 1 and Sπi = {(u1, . . . , un−1) ∈ Rn−1 :
ui1 < · · · < uin−1}, where (i1, . . . , in−1) is a permutation of (1, 2, . . . , n − 1). In
Sπi , yj = uij , j = 1, . . . , n − 1. So the Jacobian Jπi(u1, . . . , un−1 → y1, . . . , yn−1)
of the transformation is 1. Hence, the joint of p.d.f. of (Y1, . . . , Yn−1) is

p(y1, . . . , yn−1)

=
∑
Sπi

pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

|yi|p
)(1−p)/p

Jπi(u1, . . . , un−1 → y1, . . . , yn−1)

=
(n− 1)!pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

|yi|p
)(1−p)/p

,

− 1 < y1 < · · · < yn−1 < 1,
n−1∑
i=1

|yi|p < 1.

(2) Define


wp1 = (n− 1)|y1|p,
wp2 = (n− 2)(|y2|p − |y1|p),
...

wpn−1 = |yn−1|p − |yn−2|p.

Then
∑n−1
i=1 w

p
i =

∑n−1
i=1 |yi|p and the transformation is 1-1 in the region

S(σ1, . . . , σn−1) = {(y1, . . . , yn−1) ∈ Rn−1 : sign(yi) = σi, i = 1, . . . , n− 1}, where

σi =

{
1, if yi ≥ 0,

−1, if yi < 0,
i = 1, . . . , n− 1.

It can be shown that the Jacobian of the transformation (3.2) in S(σ1, . . . , σn−1) is

J(y1, . . . , yn−1 → w1, . . . , wn−1) =
1

p
√
n− 1

n−1∏
i=2

wp−1
i

n− i

i∑
j=1

(
wpj
n− j

)1/p−1

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for every (σ1, . . . , σn−1), σi = ±1, i = 1, . . . , n − 1. Therefore, the joint p.d.f. of
(W1, . . . ,Wn−1) is

p(w1, . . . , wn−1)

=
∑

(σ1,...,σn−1)


(n− 1)!pn−1Γ(n/p)

2n−1Γn(1/p)

(
1−

n−1∑
i=1

wpi

)(1−p)/p
· 1
p
√
n− 1

n−1∏
i=2

wp−1
i

n− i

i∑
j=1

(
wpj
n− j

)1/p−1


=
(n− 1)!pn−1Γ(n/p)

p
√
n− 1Γn(1/p)

n−1∏
i=2

wp−1
i

n− i

i∑
j=1

(
wpj
n− j

)1/p−1


·
(

1−
n−1∑
i=1

wpi

)(1−p)/p

,

wi > 0, i = 1, 2, . . . , n− 1,
n−1∑
i=1

wpi < 1.
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