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OF A BANACH ALGEBRA AND SPECTRAL SYNTHESIS
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(Communicated by Theodore Gamelin)

Abstract. Let the space Id(A) of closed two-sided ideals of a Banach algebra
A carry the weak topology. We consider the following property called normality
(of the family of finite subsets of A): if the net (Ii)i in Id(A) converges weakly
to I, then for all a ∈ A\I we have lim infi ‖a + Ii‖ > 0 (e.g. C∗-algebras,
L1(G) with compact G, . . . ). For a commutative Banach algebra normality is
implied by spectral synthesis of all closed subsets of the Gelfand space ∆(A),
the converse does not always hold, but it does under the following additional
geometrical assumption: inf{‖ϕ1 − ϕ2‖;ϕ1, ϕ2 ∈ ∆(A), ϕ1 6= ϕ2} > 0.

1. Introduction

Let A be a Banach algebra. By Id(A) we denote the space of all closed two-sided
ideals of A. A compact family is by definition a family K of compact subsets of A
which is stable with respect to finite unions. Typical examples are

• the family F of all finite sets in A,
• the family Ks of all finite unions of norm convergent sequences together with

their limits,
• the family of all compact subsets of A.

If K is a compact family, then the sets

U(K) := {I ∈ Id(A); I ∩K = ∅}, K ∈ K,
together with Id(A) (this may be regarded as U(∅)) are a base of a topology τ(K)
on Id(A).

These topologies have been considered in [3]. τ(F) is well known as the hull-
kernel or weak topology and is denoted by τw in [1] in the case of C∗-algebras or
in [12] in the general Banach algebra case.

We say that a family is normal in I ∈ Id(A) iff the following holds:
If the net (Ii)i is τ(K)-convergent to I, then for all a ∈ A\I we have

lim infi ‖a+ Ii‖ > 0.
K is normal iff K is normal in all ideals.
It is well known that F is normal in the case of a C∗-algebra, and other examples

can be found in [3]. It turns out that normality is a strong property and that some
results about C∗-algebras may be extended to the more abstract setting of a Banach
algebra where F is normal.
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If A is a separable Banach algebra and K is a normal compact family, then
(Id(A),K) is a second countable space by [3], Th. 5, and the converse holds if
K ⊃ Ks by [3], Th. 6. This converse does not hold for the family K = F , see the
section “Examples” for this.

The main purpose of the present paper is to investigate the normality condition
for F in the case of a commutative Banach algebra, and it turns out that it is
closely related to spectral synthesis. If each closed subset of the Gelfand space
∆(A) admits spectral synthesis, then F is normal. The converse does not hold in
general, but it does under an additional geometrical property of the Gelfand space,
namely if

inf{‖ϕ1 − ϕ2‖;ϕ1, ϕ2 ∈ ∆(A), ϕ1 6= ϕ2} > 0.

This distance property will be investigated in the following section. The main
results about the relations between normality of F and spectral synthesis are treated
in the third section. The last section presents some examples.

2. Distance properties of the Gelfand space

We will be in need of the following technical property D(n) of a commutative
Banach algebra A with Gelfand space ∆(A), where n is a positive integer:
D(n): There is a constant α > 0 such that whenever ϕ1, . . . , ϕn ∈ ∆(A) and

ϕ1 /∈ {ϕ2, . . . , ϕn}, then

dist(ϕ1, span{ϕ2, . . . , ϕn}) > α.

If ϕ1 /∈ {ϕ2, . . . , ϕn} it is clear that ϕ1 is linearly independent of {ϕ2, . . . , ϕn},
hence the norm distance of ϕ1 to span{ϕ2, . . . , ϕn} is greater than zero. The above
condition requires that this does not depend on the characters chosen but only on
n. With the usual convention that span(∅) = {0} the condition D(1) says nothing
but inf{‖ϕ‖;ϕ ∈ ∆(A)} > 0.

In this section we will characterize this technical property by simpler properties
that seem to be more natural and find some examples.

Proposition 1. For a commutative Banach algebra A the following conditions are
equivalent:

(i) There is a constant K > 0 such that whenever ϕ1 and ϕ2 are different char-
acters there is an element a ∈ A with ‖a‖ ≤ K, â(ϕ1) = 0 and â(ϕ2) = 1.

(ii) inf{‖ϕ1 − ϕ2‖; ϕ1, ϕ2 ∈ ∆(A), ϕ1 6= ϕ2} > 0.
(iii) A satisfies D(1) and D(2).
(iv) A satisfies D(n) for all n ∈ N.

Proof. (i) ⇒ (iv): We may assume that ∆(A) contains at least two elements since
otherwise there is nothing to prove. If ϕ ∈ ∆(A), then there is another character
different from ϕ and (i) implies that there is an a ∈ A with ‖a‖ ≤ K such that
ϕ(a) = 1. This means ‖ϕ‖ ≥ 1

K , hence D(1) holds.
Now let n ≥ 2 and let ϕ1, . . . , ϕn ∈ ∆(A) such that ϕ1 /∈ {ϕ2, . . . , ϕn}. Then for

each j = 2, . . . , n there is an element aj ∈ A with ‖aj‖ ≤ K such that ϕj(aj) = 0
and ϕ1(aj) = 1. Let a := a2 · . . . · an. Then ‖a‖ ≤ Kn−1 and for λ2, . . . , λn ∈ C
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we have ∣∣∣∣∣∣ϕ1(a)−
n∑
j=2

λjϕj(a)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ϕ1(a2) · . . . · ϕ1(an)︸ ︷︷ ︸
=1

−
n∑
j=2

λj ϕj(a2) · . . . · ϕj(an)︸ ︷︷ ︸
=0

∣∣∣∣∣∣ = 1

⇒
∥∥∥∥∥∥ϕ1 −

n∑
j=2

λjϕj

∥∥∥∥∥∥ ≥ 1

Kn−1
.

This proves

dist(ϕ1, span{ϕ2, . . . , ϕn}) ≥ 1

Kn−1
.

(iv) ⇒ (iii) ⇒ (ii) is trivial.
(ii) ⇒ (i): Let A1 be the Banach algebra obtained from A by adjunction of a

unit. For ϕ ∈ ∆(A) let ϕ̃ : A1 → C, a + λ1 7→ ϕ(a) + λ and let ω : A1 → C,
a+ λ1 7→ λ. Then it is well known that ∆(A1) = {ϕ̃;ϕ ∈ ∆(A)} ∪ {ω}.

(ii) obviously implies D(1), i.e. α := inf{‖ϕ‖; ϕ ∈ ∆(A)} > 0. Let β be the
infimum in (ii). If ψ1, ψ2 ∈ ∆(A1) we see by the above description of ∆(A1) that

‖ψ1 − ψ2‖ ≥ ‖ψ1|A − ψ2|A‖ ≥ min{α, β} =: γ.

So there is an x ∈ A1 such that ‖x‖ ≤ 1, |ψ1(x)−ψ2(x)| > γ
2 . Put y := x−ψ2(x)1.

Then ‖y‖ ≤ 2, ψ2(y) = 0 and |ψ1(y)| > γ
2 . So if z := 1

ψ1(y)
y, then ‖z‖ ≤ 4

γ ,

ψ2(z) = 0 and ψ1(z) = 1.
Therefore A1 satisfies the property in (i) with the constant 4

γ . We now show

that A has this property, too. Let ϕ1, ϕ2 ∈ ∆(A) be different characters. Then ω,
ϕ̃1 and ϕ̃2 are pairwise different characters of A1, and by what we proved above
we can find z1, z2 ∈ A1 such that ‖z1‖, ‖z2‖ ≤ 4

γ and ω(z1) = 0, ϕ̃1(z1) = 1,

ϕ̃1(z2) = 1, ϕ̃2(z2) = 0. Then a := z1z2 ∈ ker(ω) = A and ‖a‖ ≤ ( 4
γ )2, ϕ1(a) = 1,

ϕ2(a) = 0. This finishes the proof.

Definition 2. We say that A satisfies the distance property iff it satisfies the prop-
erties of the above proposition.

Examples. Each Banach algebra C0(X), X a locally compact Hausdorff space,
has the distance property, indeed, the distance between any two point evaluations
equals 2.

Let G be a locally compact abelian group. If γ1, γ2 are different characters, then

by [10], Th. 2.6.1, there is an element f ∈ L1(G) such that f̂(γ1) = 1, f̂(γ2) = 0
and ‖f‖1 ≤ 1. So L1(G) satisfies the distance property.

The Lipschitz algebras Lip(X, d), (X, d) a compact metric space, do not have
the distance property since for s 6= t in X and f ∈ Lip(X, d)

|f(s)− f(t)| = |f(s)− f(t)|
d(s, t)

d(s, t) ≤ ‖f‖ · d(s, t).

The same consideration applies to the Banach algebras lip(X, d) and C1[0, 1].
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3. Spectral synthesis

We now relate the normality of the family F of finite subsets of a commutative
Banach algebra A to the spectral synthesis of the closed sets of its Gelfand space
∆(A). We recall that a closed subset E ⊂ ∆(A) satisfies spectral synthesis iff there
is exactly one closed ideal I ∈ Id(A) such that E is the hull of I. See [7], Ch. X,
§39, for this concept. We start with the following easy proposition.

Proposition 3. Let A be a commutative Banach algebra such that each closed set
of the Gelfand space has spectral synthesis. Then F is normal.

Proof. Each ideal I ∈ Id(A) has the form I =
⋂
E where E ⊂ ∆(A) is the hull of

I. Let
⋂
Ei →

⋂
E with respect to τ(F) and x ∈ A\⋂E. We must show that

lim infi ‖x+
⋂
Ei‖ > 0.

Since x /∈ ⋂E there is a ϕ ∈ E such that ϕ(x) 6= 0. Let

U :=

{
ψ ∈ ∆(A); |ψ(x)| > 1

2
|ϕ(x)|

}
,

which is an open neighbourhood of ϕ. Because ϕ ∈ E ∩ U we have E 6⊂ U c, hence⋂
E 6⊃ ⋂

U c. By the assumed τ(F)-convergence we get
⋂
Ei 6⊃

⋂
U c for large i,

hence Ei ∩ U 6= ∅ for large i. Let ψi ∈ Ei ∩ U . Then∥∥∥x+
⋂
Ei

∥∥∥ ≥ ‖x+ ker(ψi)‖ ≥ |ψi(x)| ≥ 1

2
|ϕ(x)|

for large i, and this finishes the proof.

There are many examples of commutative Banach algebras having spectral syn-
thesis for all closed sets of the Gelfand space:

• commutative C∗-algebras, see [14], Th. 85, for the unital case, [6], Th. 2.9.7
for the non-unital and even non-commutative case,

• L1(G), G a compact group, see [10], Th. 7.1.5,
• lip(X, dα), (X, d) a compact metric space, see [11], Cor. 4.3,
• the small Zygmund algebra λ, see [9], Cor. of Lemma 1,
• and others, see [4]; [5]; [7], Th. (38.7); [8].

The converse does not hold as we will see later, but it does under additional
assumptions. For a closed subset E ⊂ ∆(A) the following ideals are important in
the theory of spectral synthesis:

K(E) := {a ∈ A; â vanishes on E},

J0(E) :=

{
a ∈ A;

â vanishes in a neighbourhood of E
and â has compact support

}
,

J(E) := J0(E), the closure of J0(E).

If A is semisimple and regular, then a closed subset E ⊂ ∆(A) has spectral
synthesis iff J(E) = K(E). So in order to prove a converse of the above proposition
we want A to be regular:

Proposition 4. Let A be a commutative Banach algebra such that F is normal
and inf{‖ϕ‖;ϕ ∈ ∆(A)} > 0. Then A is regular.
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Proof. Let E ⊂ ∆(A) be closed and ϕ ∈ ∆(A)\E. We have to show that there is
an a ∈ A such that â|E = 0 and â(ϕ) 6= 0. Assume that this were not the case.
Then

â|E 6= 0 for all a ∈ A\ ker(ϕ).(1)

Let F0 := {F ∈ F ;F ⊂ A\ ker(ϕ)}. Then for all F = {a1, . . . , an} in F0 the
product a1 · . . . · an is not in ker(ϕ) and so by (1) there is ϕF ∈ E such that
(â1 · · · ân)(ϕF ) 6= 0 and this means ker(ϕF ) ∈ U(F ). By construction we have a
net (ϕF )F∈F0 which τ(F)-converges to ker(ϕ). Because ∆(A) ∪ {0} is w∗-compact
there is a subnet (ϕFi)i such that ϕFi → ψ in ∆(A)∪{0}. Since E is closed we have
ψ ∈ E ∪ {0}, in particular ϕ 6= ψ. Then we can find an a ∈ A such that ϕ(a) 6= 0
and ψ(a) = 0.

Let c := 1
2 inf{‖ϕ‖;ϕ ∈ ∆(A)} > 0. For each i there is a bi in A such that

‖bi‖ ≤ 1
c and ϕFi(bi) = 1. Then we have

‖a+ ker(ϕFi)‖ ≤ ‖a− (a− ϕFi(a)bi)‖ ≤
1

c
|ϕFi(a)| →

1

c
ψ(a) = 0.

Now the normality of F yields the contradiction a ∈ ker(ϕ).

Proposition 5. Let A satisfy the distance property and let F be normal in J(E),
∅ 6= E ⊂ ∆(A) closed. Then J(E) = K(E).

Proof. Let α(n) be the constant in the distance property D(n); we clearly may
assume α(1) ≥ α(2) ≥ . . . . There is nothing to prove if A = J(E). Let F0 be the
set of non-empty, finite subsets of A\J(E). Let F1 be the set of non-empty, finite
subsets of K(E). On F0 ×F1 ×R+ we define an order by

(F0, F1, ε) ≤ (F ′
0, F

′
1, ε

′) : ⇔ F0 ⊂ F ′
0, F1 ⊂ F ′

1, ε ≥ ε′.

This makes F0×F1×R+ a directed set and we will use it to construct a net which
τ(F)-converges to J(E). To this end let (F0, F1, ε) be given and define

U(F0, F1, ε) :=

{
ϕ ∈ ∆(A); |ŷ(ϕ)| < εα(|F0|)

2|F0| for all y ∈ F1

}
.

|F0| denotes the number of elements in the set F0. If y ∈ F1, then ŷ vanishes on
E. Therefore U(F0, F1, ε) is an open neighbourhood of E and its complement is
compact because F1 is finite and Gelfand transforms vanish at infinity. If x ∈ F0,
then x /∈ J(E) and so there must be a character ϕx,F0,F1,ε ∈ U(F0, F1, ε) such
that ϕx,F0,F1,ε(x) 6= 0. (This is the place where we need E 6= ∅ since this implies
U(F0, F1, ε) 6= ∅.) Let

I(F0,F1,ε) :=
⋂
x∈F0

ker(ϕx,F0,F1,ε).

This finishes the construction of the net.
Let us show that the above net τ(F)-converges to J(E). If x ∈ A\J(E), then for

(F0, F1, ε) ≥ ({x}, {0}, 1) we have x ∈ F0, hence ϕx,F0,F1,ε(x) 6= 0, and this yields
x /∈ I(F0,F1,ε). But this is nothing but the stated τ(F)-convergence.

The assertion of the proposition is K(E) ⊂ J(E). Let y ∈ K(E). As F is
normal at J(E) it is sufficient to prove that lim infF0,F1,ε ‖y + I(F0,F1,ε)‖ = 0. To
this end let ε > 0 be given. Let x1 be any element from A\J(E) and consider
(F0, F1, η) ≥ ({x1}, {y}, ε). Then we have F0 = {x1, . . . , xn}. Let us abbre-
viate ϕj := ϕxj ,F0,F1,η ∈ U(F0, F1, η). After renumbering we may assume that
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ϕ1, . . . , ϕm are the different elements of {ϕ1, . . . , ϕ|F0|}. By the property D(m) we
conclude

dist(ϕj , span{ϕi; i 6= j}) ≥ α(m), j = 1, . . . ,m.

The Hahn-Banach theorem provides us with functionals Ψj ∈ A′′ such that ‖Ψj‖ =
1, Ψj(span{ϕi; i 6= j}) = 0 and Ψj(ϕj) = dist(. . . ) ≥ α(m).

Let H = span(Ψ1, . . . ,Ψm), G = span(ϕ1, . . . , ϕm). By the principle of local
reflexivity [13] there is a linear isomorphism T : H → A0 ⊂ A such that ‖T ‖,
‖T−1‖ ≤ 2 and Ψ(ϕ) = ϕ(TΨ) for all Ψ ∈ H , ϕ ∈ G.

Define yj = TΨj. Then ‖yj‖ ≤ 2, ϕi(yi) = 0 for all i 6= j and ϕj(yj) ≥ α(m).
So if xj := 1

ϕj(yj)
yj , then ‖xj‖ ≤ 2

α(m) and ϕi(xj) = δi,j . Consider the projection

P : A→ span{x1, . . . , xm}, x 7→
m∑
i=1

ϕi(x)xi.

Since the x1, . . . , xm are linearly independent elements, we have ker(P ) =⋂m
i=1 ker(ϕi) = I(F0,F1,η). So for the given element y which is in F1, we have

y −
m∑
i=1

ϕi(y)xi = y − Py ∈ I(F0,F1,η), ⇒

‖y + I(F0,F1,η)‖ ≤ ‖Py‖ ≤ max
i=1,...,m

|ϕi(y)| ·
m∑
i=1

‖xi‖

≤ max
i=1,...,m

|ŷ(ϕi)| ·m · 2

α(m)
≤ ηα(|F0|)

2|F0| ·m · 2

α(m)
≤ ε.

This finishes the proof.

Theorem 6. Let A be a commutative, semisimple Banach algebra satisfying the
distance property such that τ(F) is normal. Then each closed subset of the Gelfand
space has the property of spectral synthesis.

Proof. The semisimplicity is equivalent to spectral synthesis of ∆(A). So let E ⊂
∆(A) be a proper, non-empty subset. Because A is regular (by Prop. 4) and
semisimple each ideal I ∈ Id(A) with hull E lies between J(E) and K(E), and so
it is unique by the above Proposition 5 and the other assumptions of the theorem.
The case E = ∅ causes some inconveniences:

We have to show that {a ∈ A; supp(â) ⊂ ∆(A) is compact} is dense in A (i.e.
that A is Tauberian). Let J be the closure of this ideal and let us assume that
J 6= A. Then ∆(A) is not compact. Define

F0 :={non-empty finite subset of A\J},
F1 :={non-empty finite subsets of A}.

Consider the set F0×F1×R+ with the order as defined in the proof of Proposition
5 and define U(F0, F1, ε) as in that proof. Since ∆(A)\U(F0, F1, ε) is compact it
cannot contain the support of any element in F0. So for each x ∈ F0 there must be
a character ϕx,F0,F1,ε ∈ U(F0, F1, ε) which does not vanish in x. Again define

I(F0,F1,ε) :=
⋂
x∈F0

ker(ϕx,F0,F1,ε).
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Repeat the corresponding part of the proof of Proposition 5 to see that I(F0,F1,ε) →
J and ‖y + I(F0,F1,ε)‖ → 0 for all y ∈ A. The normality then implies J = A which
is the desired contradiction.

4. Examples

Example 1. The algebra

A := {f ∈ C[0, 1]; f is differentiable in 0}
is a Banach algebra under the norm

‖f‖ := sup
t∈[0,1]

|f(t)|+ sup
t∈(0,1]

∣∣∣∣f(t)− f(0)

t

∣∣∣∣ .
The following facts can be shown, the proofs are not always easy:

• The Gelfand space is homeomorphic to the unit interval identifying a point
with the corresponding point evaluation.

• Let M := {f ∈ A; f(0) = f ′(0) = 0}. The closed ideals of A have the form
K(E) or K(E) ∩M for a unique closed subset E ⊂ [0, 1]. A closed subset
E ⊂ [0, 1] has spectral synthesis iff 0 is not an isolated point of E (i.e. 0 /∈ E
or 0 is an accumulation point of E\{0}).

• The space (Id(A), τ(F)) is second countable.
• F is not normal. Even more is true: the family of all compact sets is not

normal.

This example shows that second countability of F in general does not imply
normality of F .

Example 2. Consider the commutative C∗-algebraA = C[0, 1] with the supremum
norm. Let z ∈ A be the identity map, i.e. z(t) = t, t ∈ [0, 1]. Define a new
multiplication � on A by f � g := fzg, and denote the resulting Banach algebra by
B.

Then it is easy to see that Id(A) = Id(B) and that the topologies τ(K) mean
the same thing on Id(A) and on Id(B). Since A is a C∗-algebra it follows that F
is normal (for A and for B). B does not have spectral synthesis for the following
reason:

The Gelfand space is easily seen to be ∆(B) = {t ·ωt; t ∈ (0, 1]} where ωt denotes
the point evaluation in t. ker(ω0) is a maximal ideal in B, but it is not regular,
hence the hull of ker(ω0) is empty. Therefore the empty set ∅ ⊂ ∆(B) does not
have spectral synthesis. This example shows that the converse of Proposition 3
does not hold in general.

Example 3. As another example let us consider group algebras.

Proposition 7. Let G be a locally compact, non-compact, abelian group. Then the
Banach algebra L1(G) has at least one of the following two properties:

(i) τ(F) 6= τ(Ks).
(ii) F is not first countable.

Proof. Assume that both properties do not hold. Then τ(F) = τ(Ks) is first
countable, hence we have normality by [3], Th. 6. Since L1(G) satisfies the distance
property we can conclude by Theorem 6 that L1(G) admits spectral synthesis. But
this is not the case by Malliavin’s theorem ([7], Th. 42.19, or [10], Th. 7.6.1).
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Example 4. Let (X, d) be a complete metric space. It is well-known that lip(X, dα)
is a regular semisimple commutative Banach algebra satisfying spectral synthesis for
all closed sets. In particular τ(F) is normal by Proposition 3. In general Theorem
6 is not applicable in this situation because lip(X, dα) lacks the distance property.
If (X, d) is the unit interval with the Euclidean distance and if δs denotes the point
evaluation in s ∈ [0, 1], then we have for each f ∈ lip([0, 1], | · |α)

|δs(f)− δt(f)| = |f(s)− f(t)|
|s− t|α |s− t|α ≤ ‖f‖|s− t|α,

i.e. ‖δs − δt‖ ≤ |s− t|α, hence the distance property is not satisfied.

Let us finish with some questions:

• The last proposition prompts us to ask which of the two properties hold,
maybe both of them?

• If K is a compact family containing Ks, then first countability and second
countability of (Id(A), τ(K)) are equivalent by [3], Th. 6. Does this equiva-
lence also hold for F?

• Is it possible to weaken the distance property to some property (P) such
that spectral synthesis for all closed sets of the Gelfand space is equivalent to
normality of F and (P)?

• How can the results of Section 3 be generalized to the non-commutative case?
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[5] T. Ceauşu, D. Gaşpar, Generalized Lipschitz spaces as Banach algebras with spectral syn-
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