PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 125, Number 10, October 1997, Pages 3129–3130 S 0002-9939(97)04238-X

$$Lip_{Hol}(X,\alpha)$$

K. JAROSZ

(Communicated by Dale Alspach)

ABSTRACT. Let X be a compact subset of the complex plane \mathbb{C} , and let $0 < \alpha \leq 1$. We show that the maximal ideal space of Banach algebras of Lipschitz functions, which are analytic on int X, coincides with X.

Let X be a compact subset of the complex plane \mathbb{C} , and let $0 < \alpha \leq 1$. Lip_{Hol}(X, α) is the algebra of all complex-valued functions f on X which are analytic on intX and such that

$$p_{\alpha}(f) = \sup \left\{ \frac{|f(x) - f(y)|}{\left(\operatorname{dist}(x, y)\right)^{\alpha}} : x, y \in X, x \neq y \right\} < \infty,$$

and $\lim_{Hol}(X,\alpha)$ is the subalgebra of $\lim_{Hol}(X,\alpha)$ consisting of all functions f with $\frac{|f(x)-f(y)|}{(\operatorname{dist}(x,y))^{\alpha}} \to 0$ as $\operatorname{dist}(x,y) \to 0$. $\lim_{Hol}(X,\alpha)$ and $\lim_{Hol}(X,\alpha)$ are Banach algebras if equipped with the norm $||f|| = p_{\alpha}(f) + ||f||_{\infty}$, where $||\cdot||_{\infty}$ is the supremum norm on X.

Mahyar [3] proved that for $0 < \alpha < 1$ the maximal ideal space of $\operatorname{lip}_{Hol}(X,\alpha)$ is X, and asked to characterize the maximal ideal space of $\operatorname{Lip}_{Hol}(X,\alpha)$. In this note we provide an elementary proof that the maximal ideal space of $\operatorname{Lip}_{Hol}(X,\alpha)$ is also X.

We use the standard Banach algebra notation. For a commutative normed algebra A we denote by $\mathfrak{M}(A)$ the maximal ideal space of A and we identify maximal ideals with the corresponding linear and multiplicative functionals. For an algebra A of functions on X with pointwise multiplication we identify X with a subset of $\mathfrak{M}(A)$.

Theorem. Let X be a compact subset of, and let $0 < \alpha \le 1$. Then the maximal ideal space of $Lip_{Hol}(X, \alpha)$ coincides with X.

Proof. Let $F \in \mathfrak{M}(\operatorname{Lip}_{Hol}(X,\alpha))$, and let $z_0 = F(\mathbf{Z})$, where $\mathbf{Z}(z) = z$ for $z \in X$. Notice that $z_0 \in X$. Otherwise $h = (\mathbf{Z} - z_0)$ would be an invertible element in ker F. Assume $f \in \operatorname{Lip}_{Hol}(X,\alpha)$ is such that $f(z_0) = 0$ and let $n > \frac{3}{\alpha}$. Put $g(z) = \frac{(f(z))^n}{z - z_0}$ for $z \in X \setminus \{z_0\}$, and $g(z_0) = 0$.

We show that $g \in \text{Lip}_{Hol}(X, \alpha)$. To simplify the notation we can assume without loss of generality, by applying a suitable linear transformation to X, that $z_0 = 0$ and that X is a subset of the unit disc. We can also assume that $p_{\alpha}(f) \leq 1$.

Received by the editors July 7, 1995 and, in revised form, October 20, 1996. 1991 Mathematics Subject Classification. Primary 46J15.

3130 K. JAROSZ

Since $p_{\alpha}(f) \leq 1$, we have $|f(z)| = |f(z) - f(0)| \leq |z|^{\alpha}$ for $z \in X$, so because of the choice of n we have

(1)
$$|(f(z))^n| \le |z|^3 \quad \text{for } z \in X.$$

Let z_1 , z_2 be two distinct elements of X. Assume that $|z_1| \leq |z_2|$. By (1), and since $p_{\alpha}(f) \leq 1$, we have: if $z_1 = 0$, then

$$\frac{|g(z_2) - g(z_1)|}{|z_2 - z_1|^{\alpha}} = \frac{|g(z_2)|}{|z_2|^{\alpha}} = \frac{|(f(z_2))^n|}{|z_2|^{\alpha+1}} \le \frac{|z_2|^3}{|z_2|^{\alpha+1}} \le 1 < \infty,$$

and if $z_1 \neq 0$, we have

$$\frac{|g(z_{2}) - g(z_{1})|}{|z_{2} - z_{1}|^{\alpha}} = \frac{|z_{1} (f(z_{2}))^{n} - z_{2} (f(z_{1}))^{n}|}{|z_{2} - z_{1}|^{\alpha} |z_{1}| |z_{2}|} \\
\leq \frac{|z_{1}| |(f(z_{2}))^{n} - (f(z_{1}))^{n}| + |z_{2} - z_{1}| |(f(z_{1}))^{n}|}{|z_{2} - z_{1}|^{\alpha} |z_{1}| |z_{2}|} \\
= \frac{|(f(z_{2}))^{n} - (f(z_{1}))^{n}|}{|z_{2} - z_{1}|^{\alpha} |z_{2}|} + \frac{|z_{2} - z_{1}| |(f(z_{1}))^{n}|}{|z_{2} - z_{1}|^{\alpha} |z_{1}| |z_{2}|} \\
\leq \frac{|f(z_{2}) - f(z_{1})| \sum_{j=0}^{n-1} |f(z_{2})|^{j} |f(z_{1})|^{n-1-j}}{|z_{2} - z_{1}|^{\alpha} |z_{2}|} + \frac{|z_{2} - z_{1}| |z_{1}|^{2}}{|z_{2} - z_{1}|^{\alpha} |z_{2}|} \\
\leq \frac{|f(z_{2}) - f(z_{1})|}{|z_{2} - z_{1}|^{\alpha}} \frac{n |z_{2}|^{\alpha(n-1)}}{|z_{2}|} + |z_{2} - z_{1}|^{1-\alpha} |z_{1}| \\
\leq \frac{|f(z_{2}) - f(z_{1})|}{|z_{2} - z_{1}|^{\alpha}} n + |z_{2} - z_{1}|^{1-\alpha} \leq np_{\alpha}(f) + 2 < \infty.$$

Hence $g \in \text{Lip}_{Hol}(X, \alpha)$.

We have $F(f^n) = F((\mathbf{Z} - z_0) \cdot g) = F(\mathbf{Z} - z_0)F(g) = 0$, so F(f) = 0. Hence $\{f \in \operatorname{Lip}_{Hol}(X, \alpha) : f(z_0) = 0\} \subseteq \ker F$, therefore F is the functional of evaluation at z_0 , and $X = \mathfrak{M}(\operatorname{Lip}_{Hol}(X, \alpha))$.

A very similar proof, with only minor modifications, can be applied to several other algebras including $\lim_{Hol} (X, \alpha)$ and some of the algebras studied by Dales and Davie [1].

One may be tempted to "prove" the Theorem with the following argument: The algebra $\operatorname{Lip}_{Hol}(X,\alpha)$ is contained between $\operatorname{lip}_{Hol}(X,\alpha)$ and the uniform algebra A(X) of all continuous functions on X that are analytic on $\operatorname{int} X$; the maximal ideal spaces of both algebras $\operatorname{lip}_{Hol}(X,\alpha)$ and A(X) are equal to X so $\mathfrak{M}(\operatorname{Lip}_{Hol}(X,\alpha)) = X$. However such a conclusion is, in general, incorrect - see an ingenuous example by Honary [2].

References

- H. G. Dales and A. M. Davie. Quasianalytic Banach function algebras. *Journal of Functional Analysis*, 13:28–50, 1973. MR 49:7782
- [2] T. G. Honary. Relations between Banach function algebras and their uniform closures. Proc. Amer. Math. Soc., 109(2):337–342, June 1990. MR 91d:46066
- [3] H. Mahyar. The maximal ideal space of $lip_A(X,\alpha)$. Proc. Amer. Math. Soc., 122(1):175–181, September 1994. MR **95a**:46074

Department of Mathematics, Southern Illinois University at Edwardsville, Edwardsville, Illinois 62026

E-mail address: kjarosz@siue.edu