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APPROXIMATION OF SINGULARITY SETS

WITH ANALYTIC GRAPHS OVER THE BALL IN C2

MARSHALL A. WHITTLESEY

(Communicated by Eric Bedford)

Abstract. Let h be a smooth function on the ball in C2 whose gradient has
length less than or equal to 1. We show that if h is uniformly near an analytic
function on every complex affine one-dimensional slice then it must be near
some function analytic on the whole ball. We use this to show the following:
a singularity set over the ball which is near the graph of a function h with
|∇h| ≤ 1 must be near the graph of some analytic function over the ball.

Let B2 be the open unit ball in C2, let S = ∂B2 and let K be a compact
subset of B2×C. We say that K is a singularity set if (B2×C)\K is pseudoconvex.
This implies that there exists an f analytic on (B2×C)\K which is singular at
each point of the boundary of K in B2×C. If we let ∆ denote the closed unit
disk in C then we can make a similar definition of a singularity set in (int∆)×C.
Singularity sets were studied as early as 1909 by Hartogs [3] and later by Oka [5]
and Nishino [4]. One issue that has been studied is the question of whether such sets
possess analytic structure, i.e., whether they contain analytic varieties. Wermer [9]
and S lodkowski [8] showed that such an expectation is reasonable in general by
proving a maximum modulus principle for singularity sets K projecting onto ∆; in
particular, the following holds:

Proposition. If (z0, w0) ∈ K then for every polynomial Q,

|Q(z0, w0)| ≤ sup
(z,w)∈K∩{|z|=1}

|Q(z, w)|.

(See (1) on p. 264 of [1].) In [1], Alexander and Wermer showed that a singularity
set projecting onto the disk which is reasonably “thin” must be near an analytic
graph. More precisely, they showed

Theorem of [1]. Let λ → a(λ) be a continuous function defined for |λ| ≤ 1 with
|a(λ)| ≤ 1 for all λ. Fix r > 0. Suppose that there exists a singularity set X
projecting onto ∆ such that X is contained in the tube {(λ,w)

∣∣ |w − a(λ)| < r}.
Then there exists an analytic function λ → f(λ) such that |f(λ) − a(λ)| ≤ 4r for
each λ in the unit disk.
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We shall make use of Alexander’s and Wermer’s technique in the proof of The-
orem 2.

If h :C2 −→C is a smooth function then |∇h| shall denote the Euclidean length
of the vector

(
∂h

∂x1
,
∂h

∂x2
,
∂h

∂y1
,
∂h

∂y2
),

where (z1, z2) = (x1 + x2i, y1 + y2i). For K a singularity set over the ball we shall
prove the following.

Theorem 2. Let h be a C1 function in a neighborhood of the closed ball in C2 with
|∇h| ≤ 1 on B2. Suppose K is a singularity set projecting onto B2 such that K is
contained in the tube

T = {(z, w) εB2×C
∣∣|w − h(z)| < ε}.

Then there exists an analytic polynomial F in C2 such that

|F (z)− h(z)| < 26
√
ε on B2.

Suppose that L is a complex affine subspace of C2 of complex dimension 1 which
meets B2 and let p be the point on L nearest to (0, 0). Then the points on L which
meet S form a circle in L with center p and L ∩ B2 is a disk embedded complex
affinely in C2. We shall write ∆ = L ∩B2 and refer to ∆ as a complex affine slice
of B2. Our technique shall be to use the fact that h is uniformly near an analytic
function on every complex affine slice of B2 (from the results over the disk) and try
to prove that h is uniformly near an analytic function on B2 as a function of two
variables. We let C(B2) denote the space of continuous complex-valued functions
on B2 with supremum norm and A(B2) the subspace of functions which are analytic
on B2.

Theorem 1. Suppose h is C1 in a neighborhood of the closed ball in C2, |∇h| ≤ 1
on B2 and that given any complex affine slice ∆ (a disk), there exists a polynomial
g∆ on ∆ such that

|h− g∆| < ε on ∆.(1)

Then in C(B2),

dist(h,A(B2)) < 13
√
ε.(2)

Proof. First we note that the theorem is trivial if ε ≥ 1, because then the fact that
|∇h| ≤ 1 means that h is uniformly within 1 of the function which is constantly

h(0), and 1 < 13
√

1. Thus we assume that ε < 1.
We shall show that C[h], the Cauchy integral of h, satisfies

dist(C[h]|∆, h|∆) <
√

5 ε in L2(∆)(3)

where ∆ = a diametrical complex linear slice of B2, ν1 = normalized area measure
on ∆ and L2(∆) = the set of functions on ∆ which are square integrable with
respect to ν1. We shall also define A2(∆) = {f analytic in int ∆| f ∈ L2(∆)}.
Suppose first that ∆ = B2 ∩ {(z1, z2)|z2 = 0}. Let σ = normalized volume measure
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on S. Using a technique used by Rudin in [6],

C[h](z1, 0) =

∫
∂B2

h(ζ1, ζ2)

(1− 〈z1, ζ1〉)2 dσ(ζ1, ζ2)

=

∫
B1

1

(1− 〈z1, ζ1〉)2
(

1

2π

∫ π

−π
h(ζ1, ζ2e

iθ)dθ

)
dν1(ζ1).

(See [6], pp. 15, 39.) For fixed ζ1 define k(ζ1, ζ2) to be the harmonic extension of

h(ζ1, x), |x| =
√

1− | ζ1 |2, to the region where |x| ≤√1− | ζ1 |2. Then the above
equation becomes

C[h](z1, 0) =

∫
B1

k(ζ1, 0)

(1− 〈z1, ζ1〉)2 dν1(ζ1).(4)

We check that k is continuous when restricted to {z2 = 0}. We have k(z1,0)=
1
2π

∫ π
−π h(z1, e

iθ
√

1− |z1|2)dθ; for z′1 near z1, h(z′1, eiθ
√

1− |z′1|2) is uniformly close

to h(z1, e
iθ
√

1− |z1|2) so k(z′1, 0) is close to k(z1,0).

Claim. For ζ1 ∈ ∆,

| h(ζ1, 0)− k(ζ1, 0) |< 2ε.(5)

Proof of Claim. From (1), we get that for fixed ζ1, there exists a polynomial fζ1 in
ζ2 such that

| h(ζ1, ζ2)− fζ1(ζ2) |< ε for | ζ2 |≤
√

1− | ζ1 |2.
Thus

| h(ζ1, 0)− k(ζ1, 0) | ≤| h(ζ1, 0)− fζ1(0) | + | fζ1(0)− k(ζ1, 0) |
< ε + sup

|ζ2|=
√

1−|ζ1|2
| fζ1(ζ2)− k(ζ1, ζ2) |

(since fζ1 and k are harmonic in ζ2)

= ε + sup
|ζ2|=

√
1−|ζ1|2

| fζ1(ζ2)− h(ζ1, ζ2) |

< 2ε,

as claimed.

Let Π : L2(∆) −→ A2(∆) be orthogonal projection. From what we know about
the Bergman kernel, (4) is the orthogonal projection of k to A2(∆), as a function
of z1. This means that Π(k|∆) = C[h]|∆. Then in L2(∆),

dist(h|∆, C[h]|∆)2 =dist(h|∆,Π(h|∆))2+dist(Π(h|∆), C[h]|∆)2(6)

by the Pythagorean theorem.
Since dist(h|∆, A(∆)) < ε in C(∆), dist(h|∆, A2(∆)) < ε in L2(∆), so we have

dist(h|∆,Π(h|∆)) < ε in L2(∆). Thus (6) is now

< ε2 + dist(Π(h|∆),Π(k|∆))2

≤ ε2 + dist(h|∆, k|∆)2

≤ ε2 + (2ε)2

from (5)

= 5 ε2.
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Thus (3) holds for ∆ = B2 ∩ {(z1, z2)|z2 = 0}.
Now if ∆ is an arbitrary complex linear diametrical slice of B2, let U be a unitary

transformation such that U({z2 = 0} ∩ B2) = ∆. Then h ◦ U satisfies the original
hypotheses of the theorem, so

dist(h ◦ U |{z2=0}, C[h ◦ U ]|{z2=0}) <
√

5ε in L2(B2 ∩ {z2 = 0})

⇒ dist(h ◦ U |{z2=0}, C[h] ◦ U |{z2=0}) <
√

5ε in L2(B2 ∩ {z2 = 0})
(since the Cauchy integral operator commutes with unitary transformations).
Since U({z2 = 0} ∩ B2) = ∆ and U induces a natural isometry from L2(∆) to
L2(B2 ∩ {z2 = 0}), we have (3).

Now let f = C[h]. Fix any diametrical slice ∆. By (1) we can choose a
polynomial g∆ εA(∆) such that |h − g∆| < ε on ∆. Then dist(h|∆, g∆) < ε in

L2(∆) ⇒dist(f |∆, g∆) ≤ dist(f, h|∆)+dist(h|∆, g∆) in L2(∆) <
√

5ε + ε from (3)

= (1 +
√

5)ε ≡ aε so that

dist(f |∆, g∆) < aε in A2(∆)(7)

Define

f r(zeiθ) = f(zreiθ), z ∈ int ∆,

gr∆(zeiθ) = g∆(zreiθ), z ∈ ∆,

hr(zeiθ) = h(zreiθ), z ∈ ∆.

Claim. For r ≤ 1−√
ε,

‖ f r − gr∆ ‖2≤ aε
3
4 in H2(∆ ∩ S).(8)

Proof of claim. Suppose not. Note that ‖ f r− gr∆ ‖2 is increasing in r since f r and
gr∆ are analytic. Thus

‖ f r − gr∆ ‖H2 ≥ aε
3
4 for r > 1−√

ε.

Using polar coordinates,∫
∆

|f − g∆|2dν1 = 2

∫ 1

0

rdr
1

2π

∫ π

−π
|f r(eiθ)− gr∆(eiθ)|2dθ

= 2

∫ 1

0

r ‖ f r − gr∆ ‖2
H2 dr

> 2

∫ 1

1−√ε
r ‖ f r − gr∆ ‖2

H2 dr

≥ 2

∫ 1

1−√ε
ra2ε

3
2 dr, from (8)

= 2a2ε
3
2

∫ 1

1−√ε
rdr ≥ a2ε

3
2 (2

√
ε− ε)

≥ a2ε
3
2 (2

√
ε−√

ε) = a2ε
3
2
√
ε = a2ε2

(recall ε < 1) so ‖ f − g∆ ‖2 > aε in A2(∆), a contradiction of (7). Thus the claim
(8) holds. This means that for r ≤ 1−√ε, ‖ f r−hr ‖L2(∆∩S) ≤‖ f r− gr∆ ‖L2(∆∩S)
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+ ‖ gr∆ − hr ‖L2(∆∩S) < aε
3
4 + ε (from (1) and (8)) ≤ (2 +

√
5)ε

3
4 and we conclude

‖ f r − hr ‖L2(∆∩S)≤ (2 +
√

5)ε
3
4 for r ≤ 1−√

ε.(9)

Note that the conclusion holds for all diametrical slices ∆.
Now define F : B2 −→C by F (z) =

∫
R
f(ze−it)φ(t)dt where φ εC∞(R), φ ≥

0, sptφ ⊂ [−√ε,√ε], ∫ φdx = 1, and φ ≤ 1√
2ε
. Also define H(z) =

∫
R
h(ze−it)φ(t)dt.

Since f and φ are smooth in B2, f analytic, F is analytic in B2 by differentiation
under the integral sign. Then for |z| ≤ 1−√

ε,

|F (z)−H(z)| ≤ |
∫
R

(f(ze−it)− h(ze−it))φ(t)dt|

≤
√∫ √

ε

−√ε
|f(ze−it)− h(ze−it)|2dt

√∫
φ(t)2dt

≤ (
√

2π)(2 +
√

5)ε
3
4

√
2
√
ε sup
t∈R

|φ(t)|2, from (9)

≤ (
√

2π)(2 +
√

5)ε
3
4

√
2
√
ε

1

2ε

≤ (
√

2π)(2 +
√

5)
√
ε

(10)

and for z ∈ B2,

|H(z)− h(z)| = |
∫
R

(h(ze−it)− h(z))φ(t)dt|

≤ sup
t∈sptφ

|h(ze−it)− h(z)| ‖ φ ‖1

≤ √
ε (since |∇h| ≤ 1).

(11)

Thus for |z| ≤ 1−√
ε,

|F (z)− h(z)| ≤ |F (z)−H(z)|+ |H(z)− h(z)|
≤ (

√
2π)(2 +

√
5)
√
ε +

√
ε, from (10) and (11)

< 12
√
ε.

(12)

Lastly define J : B2 −→ C by J(z) = F (z(1−√ε)). Then J ∈ A(B2). For z ∈ B2,

|J(z)− h(z)| = |F (z(1−√
ε))− h(z)|

≤ |F (z(1−√
ε))− h(z(1−√

ε))|+ |h(z(1−√
ε))− h(z)|

< 12
√
ε +

√
ε, from (12) and since |∇h| ≤ 1

≤ 13
√
ε.

Thus dist(h,A(B2)) < 13
√
ε in C(B2), which is (2).

We now prove Theorem 2, which we state again for the reader’s convenience.

Theorem 2. Let h be a C1 function in a neighborhood of the closed ball in C2 with
|∇h| ≤ 1 on B2. Suppose K is a singularity set projecting onto B2 such that K is
contained in the tube

T = {(z, w) εB2× C
∣∣|w − h(z)| < ε}.(13)
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Then there exists an analytic polynomial F in C2 such that

|F (z)− h(z)| < 26
√
ε on B2.(14)

Proof. Our main goal is to show that on every complex affine slice ∆ of B2, there
exists a polynomial g∆ such that

|h− g∆| < 4ε.(15)

We can then apply Theorem 1 with (1) replaced by (15) and conclude (14) since

13
√

4 = 26. Let us now fix such a ∆.
To prove (15), we can follow a method used by Alexander and Wermer in [2]

to show that dist(h|∆∩S , A(∆)) < 2ε. Let P : B2×C−→ B2 be projection and let
K ′ be the set {(z, w)

∣∣ |w − h(z)| ≤ ε, z ∈ B2}. We claim that: some element of

the polynomial convex hull of K ′ ∩ P−1(∂∆) lies over int∆. To see this, we first
note that K ∩ P−1(int∆) is a singularity set in P−1(∆) since the intersection of a
pseudoconvex set with an affine subspace is pseudoconvex in that affine subspace.
Then by the Proposition, the elements of K ∩ P−1(int∆) (which is nonempty by
assumption) are in the polynomial hull of K ∩ P−1(∂∆). Since K ′ ⊃ K, the claim
holds. Then by Theorem 1 of [2], there exists φ εH∞(∆) such that (z, φ(z)) ∈ K ′

for a.e. z ∈ ∆ ∩ S. This means that ‖ h − φ ‖∞≤ ε < 2ε. Then we conclude that
since h is continuous, dist(h|∆∩S, A(∆)) < 2ε. Choose a polynomial g∆ on ∆ such
that

|h− g∆| < 2ε on ∆ ∩ S.(16)

Now consider the polynomial w − g∆ on the set K ∩ (∆×C). Let (z0, w0) ∈ K ∩
(∆×C). Since (z0, w0) is in the polynomial hull of K ∩ P−1(∂∆),

|w0 − g∆(z0, w0)| ≤ sup
(z,w)∈K,z∈∆∩S

|w − g∆(z, w)|.(17)

Then

sup
z∈∆

|h(z)− g∆(z)|≤ sup
(z,w)∈(K∩(∆×C))

|h(z)− w|+ sup
(z,w)∈(K∩(∆×C))

|w − g∆(z)|

≤ ε + sup
(z,w)∈K,z∈∆∩S

|w − g∆(z)|, from (13) and (17)

≤ ε + sup
(z,w)∈K,z∈∆∩S

|w − h(z)|+ sup
(z,w)∈K,z∈∆∩S

|h(z)− g∆(z)|

< ε + ε + 2ε, from (13) and (16)

≤ 4ε.

This shows that (15) holds, so the theorem is proven.
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