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A NOTE ON HENSEL’S LEMMA IN SEVERAL VARIABLES

BENJI FISHER

(Communicated by Wolmer V. Vasconcelos)

Abstract. The standard hypotheses for Hensel’s Lemma in several variables
are slightly stronger than necessary, in the case that the Jacobian determinant
is not a unit. This paper shows how to weaken the hypotheses for Hensel’s
Lemma and some related theorems.

0. Introduction

The most familiar version of Hensel’s Lemma states that if f is a polynomial
with coefficients in Zp, a ∈ Zp is an approximate root of f (i.e., f(a) ≡ 0 (mod p)),
and f ′(a) is a unit (i.e., f ′(a) 6≡ 0 (mod p)) then there is a unique root a′ near a:
f(a′) = 0 and a′ ≡ a (mod p). The first application of this theorem is to the
polynomial f(X) = Xp −X : by Fermat’s Little Theorem, every p-adic integer a is
an approximate root of f ; clearly, f ′(a) ≡ −1 (mod p) for all a ∈ Zp. Thus there are
p roots of this polynomial in Zp; they are known as the Teichmüller representatives
of the residue classes (mod p).

One way to generalize Hensel’s Lemma is to relax the requirement that f ′(a) be
a unit. Let h = vp

(
f ′(a)

)
. Letting r = vp

(
f(a)

)
, one can show that if r > 2h then

there is a unique root a′ such that a′ ≡ a (mod pr−h). The first example of this
version of Hensel’s Lemma is extracting square roots 2-adically: if a2 ≡ c (mod 2r),
with c odd and r > 2, then there is a square root of c congruent to a (mod 2r−1).
In particular, an odd number has a square root in Z2 if and only if it is congruent
to 1 (mod 8).

A further generalization is to consider n polynomial equations in n variables. The
analogous statement, with the derivative replaced by the Jacobian determinant, is
true. Let bold-face letters denote n-tuples: a = (a1, . . . , an) and so on. Let f be
an n-tuple of polynomials in n variables and Jf = ∂(f1, . . . , fn)/∂(X1, . . . , Xn) the
Jacobian determinant. Let a ∈ Zp

n and h = vp
(
Jf (a)

)
. If r = mini{vp

(
fi(a)

)} >
2h then there is a unique a′ ∈ Zp

n such that fi(a
′) = 0 and a′i ≡ ai (mod pr−h) for

all i.
The point of this note is that the hypothesis r > 2h above is stronger than

necessary. The first improvement is to note how h = vp
(
Jf (a)

)
is used in the proof:

by Cramer’s Rule, the Jacobian matrix times its adjoint (or adjoint-transpose) has
the form ph× (unit)× In; in other words, the Jacobian matrix Mf (a) divides phIn.
Any value of h for which this is true will work just as well as vp

(
Jf (a)

)
. For example,
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if Mf (a) is diagonal, say Mf (a) = diag(p, . . . , p, 1) then one can take h = 1 instead
of h = vp

(
Jf (a)

)
= n− 1, a big improvement. Sometimes it is convenient to allow

larger values of h.
The second improvement is to note that the hypothesis that f(a) be divisible by

p2h+1 can be replaced by the hypothesis that f(a) be divisible by ph+1Mf (a), in
the sense of matrix multiplication: that is, f(a) = phMf (a) ·b for some b ∈ (pZp)

n.
For example, again suppose that Mf (a) is diagonal, say Mf (a) = diag(ph, 1, . . . , 1)
(so that the first improvement had no effect). Instead of requiring that fi(a) ≡ 0
(mod p2h+1) for all i, one may require this for i = 1 and fi(a) ≡ 0 (mod ph+1) for
all i > 1.

For a number-theoretic application of this improved form of Hensel’s Lemma,
see my paper with R. Dabrowski, [Da-F, Theorem 1.8]. I would be interested to
see a more geometric application. In the situation described above, the proof is
given in [Da-F, Lemma 1.20]. In the rest of this paper, I will verify that the same
improvements can be made in more general settings.

I would like to thank Romuald Dabrowski for his insistence, while we were prepar-
ing [Da-F], that we give definitive statements of our results. It was this insistence
that forced me to formulate this improved version of Hensel’s Lemma.

1. Definitions and notations

Following Bourbaki [B2, §III.4.5], I will say that a commutative ring A and an
ideal m ⊆ A satisfy Hensel’s conditions if A is complete and separated with
respect to a linear topology (i.e., a topology defined by ideals) and m is closed,
consisting of topologically nilpotent elements. (In the Introduction, A = Zp and

m = pZp.) To avoid confusion with the nth power of m, the n-fold Cartesian

product of m with itself will be denoted m(n). (In [B2], this is denoted m×n.)
Let A{X} denote the ring of restricted (formal) power series in n variables,

where X = (X1, . . . , Xn) [B2, §III.4.2]. If f = (f1, . . . , fm) is an m-tuple in A{X},
let Mf denote the Jacobian matrix; if m = n, let Jf = detMf be the Jacobian

determinant. Let M
(r)
f denote the matrix consisting of the first r columns of Mf ;

let M
(−r)
f denote the matrix consisting of the last r columns of Mf . (In [B2], there

is no notation for the first r columns; the last r columns are denoted M
(r)
f .) In

particular, Mf =
[
M

(r)
f M

(r−n)
f

]
. Similarly, if a ∈ Am, let a(r) and a(−r) denote

the first and last r entries of a. Let 1n denote the n-tuple 1n = X = (X1, . . . , Xn),
so that M1n = In (the identity matrix). I will always think of f and a as column
vectors.

In particular, if A is a discrete ring then it is automatically complete and sepa-
rated; m is automatically closed; and a restricted power series is simply a polyno-
mial. In any case, polynomials are special cases of restricted power series.

2. Hensel’s Lemma in several variables

Let A be a ring and m ⊆ A an ideal. I will assume that A and m satisfy the
simplest version of Hensel’s Lemma in several variables and derive a more general
version that incorporates the points discussed in the Introduction. The argument
closely follows one in Greenberg [Gr]. I will then show that if A is a Henselian
local ring and m is its maximal ideal then this theorem applies. (This is surely
well-known, but I do not know a reference.)
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Assume that A is complete and separated and that m is closed, with respect to
a linear topology. Let us say that (A,m) satisfies “condition (H)” if the following
version of Hensel’s Lemma holds:

Condition (H). Let f = (f1, . . . , fn) be an n-tuple of restricted power series fi ∈
A{X} and let J = Jf be the Jacobian determinant. Let a ∈ An; assume that
f(a) ∈ m(n) and that J(a) ∈ A×. Then there is a unique a′ ∈ An such that
f(a′) = 0 and a′ ≡ a (mod m(n)).

Remark. If we further assume that every element of m is topologically nilpotent
then (A,m) satisfy Hensel’s conditions, and so condition (H) is satisfied by [B2,
§III.4.5, Corollaire 3] (cf. §3, below).

Theorem 1. Assume that (A,m) satisfies condition (H). Let f = (f1, . . . , fn) be
an n-tuple with fi ∈ A{X}. Let a ∈ An and let e ∈ A be such that Mf (a)·M ′ = eIn
for some matrix M ′ (with entries in A). Assume that f(a) ∈ eMf (a)m(n): i.e.,
f(a) = eMf (a) · b for some b ∈ m(n). Then there is some a′ ∈ An such that
f(a′) = 0 and a′ ≡ a (mod em). If e is not a zero-divisor then a′ is unique.

Proof. For a single formal power series f ∈ A[[X]], Taylor’s theorem [B1, §IV.5.8,
Proposition 9] gives

f(X + Y) = f(X) +Mf(X) ·Y +
∑

1≤i≤j≤n
Gij(X,Y)YiYj

for some Gij ∈ A[[X,Y]]. Arguing as in [B2, §III.4.5], if f is restricted then so are
the entries ∂f/∂Xi of Mf and the Gij . Therefore, taking f = fi, one can replace X
with a and Y with eX, obtaining

f(a + eX) = f(a) +Mf (a) · eX + e2R(X) = eMf (a) · [b + X +M ′R(X)],(1)

where the remainder terms satisfy Ri ∈ (X)2A{X}. Let h(X) = b + X +M ′R(X)
and apply condition (H) to h: since Mh(0) = In and h(0) = b ∈ m(n), there is a
unique x ∈ m(n) such that h(x) = 0. Let a′ = a + ex, so that a′ ≡ a (mod em(n))
and f(a′) = 0.

Now assume that e is not a zero-divisor. Since Mf (a) · M ′ = eIn, Jf (a) =
detMf (a) is also not a zero-divisor. If a′ = a + ex is a root of f , with x ∈ m(n),
then multiplying both sides of Equation (1) (with X replaced by x) by the adjoint
of Mf (a) gives 0 = eJ(a)h(x), which implies h(x) = 0. This proves uniqueness.

Proposition 2. Let A be a (discrete) local ring with maximal ideal m. Then A is
Henselian if and only if (A,m) satisfy condition (H).

Proof. Assume that A is a Henselian local ring. The first step is to reduce to the
case n = 1, using the structure theory of étale A-algebras. Following the notation of
Raynaud [R], let C = A[X], I = (f) ⊆ C, and B = (C/I)J = A[X, T ]/(f , T J − 1).
If R is any A-algebra then HomA(B,R) is the set of a ∈ Rn such that f(a) = 0
and J(a) ∈ R×. Thus we must show that the canonical map HomA(B,A) −→
HomA(B, k) is an isomorphism, where k = A/m.

According to the Jacobian criterion [R, V, Théorème 5] and the fact that being
étale is a local condition [R, II, Proposition 6], B is an étale A-algebra. The question
is local on SpecB: choosing a homomorphism φ : B −→ k determines a prime ideal
q = kerφ, and lifting φ to a map B −→ A is the same as lifting it to a map
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Bg −→ A, for any g ∈ B − q. By the local structure theorem [R, V, Théorème 1],
one can choose g so that Bg is isomorphic to a standard étale A-algebra:

Bg
∼= B′ =

(
A[X ]/(f)

)
h

for a single monic polynomial f ∈ A[X ] (in one variable), where f ′ is invertible
in B′. This completes the reduction step.

The surjectivity of HomA(B′, A) −→ HomA(B′, k) is just a translation of [R, VII,
Proposition 3]. Injectivity follows from a standard argument: if f(a+x) = f(a) = 0
with x ∈ m then Taylor’s theorem gives x[f ′(a) + G(a, x)x] = 0. Since f ′(a) is a
unit and x ∈ m, the quantity in brackets is a unit, which implies that x = 0.

Conversely, if (A,m) satisfy condition (H) then, taking n = 1, the converse
direction of [R, VII, Proposition 3] shows that A is Henselian.

3. The Inverse and Implicit Function Theorems

Theorems 3 and 4 below are improvements of Théorème 2 and Corollaire 3 of [B2,
§III.4.5], to which one may refer for details of the proofs. Theorem 3 is an algebraic
version of the Inverse Function Theorem; Theorem 4 is an algebraic version of the
Implicit Function Theorem. Taking r = 0 in Theorem 4 gives Hensel’s Lemma in
several variables. (Instead of re-proving this theorem, one can apply Theorem 1 to
produce an exact root and then use the version in [B2].)

Theorem 3. Let A and m satisfy Hensel’s conditions. Let f be an n-tuple of
restricted power series fi ∈ A{X} and let a ∈ An. Let e ∈ A and let M ′ be an
n×n matrix (with entries in A) such that Mf (a)·M ′ = eIn. There is an n-tuple g,
with gi ∈ (X)A{X}, such that

(i) Mg(0) = In.
(ii) For all x ∈ An,

f(a + ex) = f(a) +Mf (a) · eg(x).

(iii) Let h be the n-tuple of formal power series (not necessarily restricted) hi ∈
A[[X]] such that g◦h = 1n. For all y ∈ m(n),

f(a + eh(y)) = f(a) +Mf (a) · ey.
Proof. Taking g = 1n+M ′ ·R, (i) and (ii) follow from Equation (1); and (iii) follows
by replacing x with h(y).

Theorem 4. Let A and m satisfy Hensel’s conditions. Let f = (fr+1, . . . , fn)
be an (n − r)-tuple of restricted power series fi ∈ A{X} and let a ∈ An. Let
e ∈ A and let M ′ be an (n − r) × (n − r) matrix (with entries in A) such that

M
(r−n)
f (a) ·M ′ = eIn−r. Assume that f(a) = eM

(r−n)
f (a) ·b for some b ∈ m(n−r).

Then there are n− r power series φi ∈ (X(r))A[[X(r)]] (r < i ≤ n) such that, for
all t ∈ m(r),

f
(
a(r) + e2t, a(r−n) + eφ(t)

)
= 0.

Proof. Apply Theorem 3 to u = (X(r)−a(r), f). Note that Mu =

[
Ir 0

M
(r)
f M

(r−n)
f

]
,

so that Mu(a)

[
eIr 0

−M ′M (r)
f (a) M ′

]
= eIn. It follows that, in Equation (1), Gij = 0

and Ri = 0 for 1 ≤ i ≤ r; and, in the proof of Theorem 3, gi = hi = Xi.
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According to Theorem 3(iii),

u
(
a + eh(y)

)
= u(a) +Mu(a) · ey = Mu(a) · e

[
y(r)

b + y(n−r)

]
.

Thus f
(
a+eh(y)

)
= 0 if and only if e

(
M

(r)
f (a)·y(r) +M

(r−n)
f (a)·(b+y(r−n))

)
= 0.

To guarantee this, it suffices to set y(r) = et and y(r−n) = −b −M ′M (r)
f (a) · t,

with t ∈ m(r). Therefore set φ(X(r)) = h(r−n)(eX(r),−b−M ′M (r)
f (a) ·X(r)); the

theorem follows.
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[B1] N. Bourbaki, Algèbre, Hermann, Paris, 1959.
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