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THE REGULAR ELEMENT PROPERTY
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Abstract. The property that an ideal whose annihilator is zero contains a
regular element is examined from the point of view of constructive mathe-
matics. It is shown that this property holds for finitely presented algebras
over discrete fields, and for coherent, Noetherian, strongly discrete rings that
contain an infinite field.

Let R be a commutative ring and M an R-module. For any subset I of R, we
write

AM (I) = {x ∈M : Ix = 0}
for the annihilator of I in M , which is a submodule of M . An element r in R is
said to be M-regular if AM (r) = 0.

We say that R has the regular element property (REP) if for each finitely
presentedR-moduleM , and finitely generated ideal I, ifAM (I) = 0, then I contains
an M -regular element.

According to Kaplansky [2, page 65], the theorem that a Noetherian ring has
the REP is “a result that is among the most useful in the theory of commutative
rings.” In particular, it is basic to the characterization of depth, for local rings
with residue class field k, as the least n such that Extn(k,M) 6= 0: it says that if
Ext0(k,M) = 0, then the depth of M is at least 1.

We will investigate this theorem from the point of view of constructive math-
ematics in the sense of Bishop [1], that is, mathematics done in the context of
intuitionistic logic. The casual reader should be able to follow the discussion by
thinking in terms of computations and constructions. Notice that if we can inter-
pret the above theorem computationally, and we can always calculate a finite set of
generators for AM (I), then it tells us how to construct maximal regular sequences.

1. A constructive look at Noetherian rings

First, let’s look at the main ideas involved from this point of view. A ring R is
Noetherian if, given a chain of finitely generated ideals

I1 ⊂ I2 ⊂ I3 ⊂ · · · ,
you can find n such that In = In+1. Not a place where the chain stabilizes,
that’s too much to ask, but a place where the chain pauses. From a constructive
point of view, you can’t show that ascending chains of ideals stabilize even over
the two-element field: you need not be able to tell whether there is an ideal in
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the chain that contains 1, so you can’t compute where the chain stabilizes. From
a noncomputational point of view, the two notions are equivalent because if the
chain does not stabilize, then it has a strictly increasing subchain. Similarly, the
restriction to finitely generated ideals is inessential from a classical point of view
because, in that context, the ascending chain condition on ideals is equivalent to
the ascending chain condition on finitely generated ideals.

Classically every Noetherian ring is coherent—finitely generated ideals are
finitely presented—but from a computational point of view, this is an additional
feature. For example, in a coherent module the intersection of two finitely gener-
ated submodules is finitely generated; the construction of those generators requires
more than invoking an ascending chain condition. So we will speak, seemingly
redundantly, of a coherent Noetherian ring. If R is coherent, and M is a finitely
presented R-module, then AM (I) is finitely generated for any finitely generated
ideal I of R [3, Theorems VIII.2.4 and VIII.2.6].

A set S is said to be discrete if for all x, y ∈ S, either x = y or x 6= y. From a
computational point of view this means that you can determine which alternative
holds. The rational numbers form a discrete field. The real numbers are an example
of a field that cannot be shown to be discrete. The problem is that no matter how
close a rational approximation you have to a real number, you need not be able
to tell whether the real number is zero. A ring R is strongly discrete if R/I is
discrete for each finitely generated ideal I. This means that you can decide whether
or not an element of R is in I—we say that I is detachable.

Let k be a discrete field. The polynomial ring k[X1, . . . , Xn] is coherent, Noe-
therian, and strongly discrete, as are its quotients modulo finitely generated ideals.
This follows from a constructive Hilbert basis theorem [3, Theorem VIII.1.5]. How-
ever, Seidenberg [4] showed that you can find primary decompositions of finitely
generated ideals in k[X1, . . . , Xn] if and only if k satisfies two conditions, which he
called F and P . Condition F says that k is factorial: any polynomial in k[X ] can
be written as a product of irreducible factors. Condition P deals with the case when
k has finite characteristic p. In its simplest form it says that any finitely generated
kp-subspace of k is finite dimensional over kp (in [3, VII.3.1] this is shown to be
equivalent to Seidenberg’s original formulation).

If k is not factorial, then k[X1, . . . , Xn] is coherent, Noetherian, and strongly
discrete, but we can’t find primary decompositions of finitely generated ideals. The
simplest example is gotten by letting k lie between the rational numbers Q and
the Gaussian numbers Q(i). That is, if you will, k is either Q or Q(i), but we
don’t know which. This lack of knowledge does not prevent us from carrying out
computations over k, such as the Euclidean algorithm in k[X ]. But it does prevent
us from factoring X2 + 1 into irreducible factors. In particular, we can’t find the
primary decomposition of the ideal generated by X2 + 1.

We say that a ring is a Lasker-Noether ring if it is coherent, Noetherian,
strongly discrete, and the radical of each finitely generated ideal is the intersection
of a finite number of finitely generated prime ideals. In a Lasker-Noether ring, each
finitely generated ideal has a primary decomposition [3, Theorem VIII.8.5]. In this
language, Seidenberg’s theorem says that k[X1, . . . , Xn] is a Lasker-Noether ring
for all n if and only k is factorial and satisfies Condition P . Finite fields clearly
have these properties, while the rational numbers are factorial by a well-known
argument of Kronecker.
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We will show that Lasker-Noether rings have the regular element property, but
that is a lot to assume. After all, k[X ] has the regular element property for any dis-
crete field k because finitely presented modules over k[X ] are direct sums of finitely
presented cyclic modules (reduce the appropriate matrix over k[X ] to Smith normal
form). Our main result is that k[X1, . . . , Xn] has the regular element property for
any n and any discrete field k. Along the way we show that any coherent, Noe-
therian, strongly discrete ring that contains an infinite field has the regular element
property.

2. The REP and Kaplansky’s Theorem 82

The regular element property is not exactly what Kaplansky was talking about
in [2, Theorem 82], but I think the statement in the introduction is still accurate.
It is instructive to examine the differences.

First off, Kaplansky was talking about the contrapositive property, REP′, which
states that if AM (r) 6= 0 for every element r in an ideal I, then AM (I) 6= 0. That
is, if an ideal consists of zero-divisors on M , then there is one witness in M to that
fact that works for the whole ideal. Most people don’t worry about the distinction
between a statement and its contrapositive, but for our purposes it is important. For
one thing, we are interested in constructing regular sequences, and REP′ provides
no mechanism for doing that. The hypothesis of REP is easy to check because if I
is generated by r1, . . . , rn, then

AM (I) = AM (r1) ∩ AM (r2) ∩ · · · ∩ AM (rn)

and, if R is coherent, we can find generators of the submodules AM (ri) and their
intersection. The hypothesis of REP′ is difficult to check, even though we can
calculate AM (r), because we must consider each r in the ideal I, not just in a finite
generating set.

The submodules AM (r) and AM (I) are finitely generated if M is coherent, so if
M is also discrete, then they are either zero or nonzero. Because of this, REP′ is
the contrapositive of REP, hence follows from it. But not vice versa, at least not
within intuitionistic logic.

The second difference is that Kaplansky considers a subring I (not required
to have an identity) rather than an ideal. This is a substantive difference from
anyone’s point of view, but the domain of application is not significantly narrowed
by considering only ideals, as most treatments do. To clarify the difference, we can
rephrase the REP (respectively, the REP for subrings) to read:

If F is a finite subset of R such that AM (F ) = 0, then the ideal (respectively,
subring) generated by F contains an M -regular element.

The point is that if AM (S) = 0 for a subset S of a Noetherian ring, then (classically)
AM (F ) = 0 for some finite subset F of S. The reader might note that in our
applications, Corollaries 5 and 6, the ring is an algebra over a field and we actually
show that the subalgebra generated by F contains an M -regular element. Also,
in Corollary 2, where the ring is required to be a Lasker-Noether ring, the proof
referred to is the standard one which shows that the subring generated by F contains
an M -regular element.
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3. Primary decomposition and the REP

If M is an R-module, then a prime ideal P of R is an associated prime ideal
of M if P = AR(x) for some x in M . The associated prime ideals of an ideal I of R
are the associated prime ideals of the module R/I. If R is a Lasker-Noether ring,
and M is finitely presented, then we can find a complete set of associated prime
ideals of M .

Theorem 1. Let R be a Lasker-Noether ring and M a finitely presented R-module.
Then the associated prime ideals of M are finitely generated and form a finite set.

Proof. Proceed by induction on the number of generators of M . If M is cyclic,
then the primes associated with M are simply the primes associated with the ideal
AR(M). If M is generated by n > 1 elements, then let N be the submodule
generated by the first n−1 of them. By induction, the prime ideals associated with
N and M/N are finitely generated and form a finite set. We first show that the
primes associated with M are among those.

Suppose P = AR(x) is a prime ideal for some x in M . Because P is prime,
P = AR(y) for any nonzero y in Rx. So if Rx ∩N 6= 0, then P is associated with
N , while if Rx ∩N = 0, then P is associated with M/N .

Now we have to eliminate those primes that are associated with N or with
M/N , but not with M . Suppose P is any finitely generated prime ideal. Consider
K = AM (P ), which is a finitely generated R/P -module. Then P will be associated
with M exactly when K has an R/P -regular element. Because R/P is a domain,
this happens exactly when one of the generators of K is R/P -regular, and we can
test a generator z because AR(z) is finitely generated, and P is detachable.

Corollary 2. If R is a Lasker-Noether ring, then R has the regular element prop-
erty.

Proof. Let M be a finitely presented module, I a finitely generated ideal such that
AM (I) = 0. Let P1, . . . , Pn be the primes associated with M . Then I is certainly
not contained in any Pi. So there is an element r in I that is not in any Pi. This is
the standard maneuver—for a constructive treatment see [3, II.2.3]. We need the
fact that I is finitely generated and the Pi are detachable.

Why is r an M -regular element? If rx = 0, then the primes associated with the
ideal AR(x) contain r and are among the Pi. So there are no primes associated
with AR(x), that is, x = 0.

4. The ring k[X1, . . . , Xn] has the REP

First we observe a very general fact about annihilators.

Lemma 3. Let R be a commutative ring and M an R-module. Let I1, . . . , In be
ideals in R, and set Ni = AM (Ii). If Ni ∩ Nj = 0 for all i 6= j, then the Ni are
independent submodules of M .

Proof. It suffices to show that Nm ∩ (N1 + · · · + Nm−1) = 0. Suppose xm =
x1 + · · ·+xm−1 with xi ∈ Ni. Then Imxm = 0, so Imxi = 0 for each i < m because
N1, . . . , Nm−1 are independent by induction. Therefore xi ∈ Nm ∩Ni = 0 for each
i < m.
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The next theorem is slightly technical. It has the logical form

∀n(An ∨B) ⇒ B

which may seem a bit strange because in classical logic that is equivalent to ∀nAn ⇒
B as the hypothesis is equivalent to (∀nAn) ∨ B. From a constructive point of
view the latter hypothesis is stronger, as it involves the determination of whether
∀nAn holds or B holds. A classic example, close to our application here, is the
construction of a primitive element in a separable field extension. The classical
argument divides into two cases, depending on whether the field is finite or infinite.
Think of An as saying that the field contains at least n elements, so ∀nAn says
that the field is infinite. It turns out that you just need lots of elements, not an
infinite number, for the infinite case argument to go through. So if, for each n, you
can show that the field contains at least n elements, or is finite, then you can prove
the theorem without deciding whether the field is infinite.

For our application, the ui below will be taken from a subfield of R.

Theorem 4. Let R be a coherent, Noetherian, strongly discrete ring, I a finitely
generated ideal of R, and M a finitely presented R-module such that AM (I) = 0.
Let u1, u2, . . . be a sequence of elements of R such that for each n, either ui − uj
is M -regular for all distinct i, j in {1, . . . , n}, or there is an M -regular element in
I. Then there is an M -regular element in I.

Proof. Let r0, . . . , rm generate I. Consider the sequence of elements

si = r0 + uir1 + u2
i r2 + · · ·+ umi rm

in I, and set Ni = AM (si). If Ni = 0, then si is our desired element. Our
hypotheses imply that Ni is finitely generated, and M is discrete, so either Ni = 0
or we can find a nonzero element of Ni. The idea is to look at the submodules Ni,
and their various intersections, construct an ascending chain of finitely generated
submodules of M , and invoke the Noetherian property of M to find i such that
Ni = 0.

We first show that the intersection of any m + 1 of the Ni is zero, or there
is an M -regular element in I. Suppose six = 0 for i = i0, i1, . . . , im. Then the
Vandermonde determinant ∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
ui0 ui1 · · · uim
u2
i0

u2
i1

· · · u2
im

...
...

...
...

umi0 umi1 · · · umim

∣∣∣∣∣∣∣∣∣∣∣
must kill rjx for each j. But either that determinant is a product of M -regular
elements, so Ix = 0, whence x = 0, or there is an M -regular element in I.

Now consider the following sequence of propositions Pt for t = 0, 1, . . . :

• For each n, either there is an M -regular element in I, or there is a set S of
2t integers greater than n, such that

⋂
i∈S Ni 6= 0.

We know that P0 holds, and that if Pt holds for 2t ≥ m + 1, then there is an
M -regular element in I. So it suffices to show that Pt implies Pt+1.

Accordingly, suppose Pt holds. Then for each n we can construct a sequence of
disjoint subsets Sj , each of cardinality 2t and consisting of integers greater than n,
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so that for each j either there is an M -regular element in I, or
⋂
i∈Sj Ni 6= 0. As

M is Noetherian, there exists q so that⋂
i∈Sq

Ni ⊂
∑
j<q

⋂
i∈Sj

Ni.

From this, and the lemma, it follows that either
⋂
i∈Sq Ni = 0, in which case there

is an M -regular element in I, or there are distinct j and k so that⋂
i∈Sj∪Sk

Ni 6= 0,

proving Pt+1.

Corollary 5. Let R be a coherent, Noetherian, strongly discrete ring that contains
an infinite field. Then R has the regular element property.

Proof. Let u1, u2, . . . be distinct elements of the infinite subfield and invoke Theo-
rem 4.

Corollary 6. If k is a discrete field, then k[X1, . . . , Xn] has the regular element
property.

Proof. Set R = k[X1, . . . , Xn]. Let I be a finitely generated ideal of R, and M
a finitely presented R-module such that AM (I) = 0. Let k0 be the subfield of k
generated by the coefficients of the polynomials generating I, together with the
coefficients of the polynomials that make up a finite presentation of M . Set R0 =
k0[X1, . . . , Xn]. We first show that R0 has the regular element property.

It’s not hard to show that, for each m, either k0 is finite or contains at least m
distinct elements [3, Theorem VI.5.4]. So we can construct a sequence of elements
u1, u2, . . . in k0 so that for each m either u1, u2, . . . , um are distinct, or k0 is finite.
If k0 is finite, then R0 has the regular element property by Corollary 2. So R0 has
the regular element property by Theorem 4.

Now we want to find an element r of I such that AM (r) = 0. Note that R =
k⊗k0R0. Then there are a finitely generated ideal I0 of R0, and a finitely presented
R0-submodule M0 of M so that I = k ⊗k0 I0 and M = k ⊗k0 M0.

We have AM0(I0) = 0 because I0 generates I, and M0 ⊂M . So AM0(r) = 0 for
some r in I0, as R0 has the regular element property. Multiplication by r induces
a monomorphism M0 →M0, hence a monomorphism M →M (any module over a
discrete division ring is flat). Thus AM (r) = 0.

5. Localization and the REP

Now that we know that k[X1, . . . , Xn] has the regular element property, it’s of
interest to know what happens when we pass to quotients and localizations.

Theorem 7. If R has the regular element property, then so does R/J for any
finitely generated ideal J .

Proof. Let M be a finitely presented R/J-module. Then (R/J)m maps onto M
with finitely generated kernel K. So Rm maps onto M with kernel equal to the
preimage ofK in Rm, which is also finitely generated. Thus M is a finitely presented
R-module.

A finitely generated ideal of R/J corresponds to a finitely generated ideal of R
containing J . Suppose I ⊃ J is a finitely generated ideal of R such that AM (I) = 0.
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As R has the regular element property, AM (r) = 0 for some r in I. So R/J has
the regular element property.

Theorem 8. If R is a coherent ring with the regular element property, and S is a
multiplicatively closed subset of R, then RS has the regular element property.

Proof. Let M ′ be a finitely presented RS-module, and I ′ an ideal of RS such that
AM ′(I ′) = 0. Then I ′ = IS for some ideal I of R, and we have an exact sequence

Rm
S → Rn

S →M ′ → 0

of RS-modules. We may assume that the free generators of Rm
S go to images of

elements of Rn in Rn
S . This gives an exact sequence

Rm → Rn →M → 0

of R-modules. As RS is a flat R-module, tensoring through with RS shows that
M ′ = MS. The submodule AM (I) is finitely generated, so M/AM (I) is finitely
presented. Moreover AM (I) goes to zero in MS , because AMS (IS) = 0, so M ′ =
(M/AM (I))S , whence we may assume that AM (I) = 0.

As R has the regular element property, there is r in I so that AM (r) = 0. That
is, multiplication by r gives a monomorphism M → M , hence a monomorphism
MS →MS .

So finitely presented algebras over discrete fields, and their localizations, have the
regular element property. The question remains open as to whether any coherent,
Noetherian, strongly discrete ring has the regular element property (without the
hypothesis that it contains an infinite field).
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