PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 126, Number 9, September 1998, Pages 2725–2732 S 0002-9939(98)04345-7

ON THE RELATIVE COMMUTANTS OF SUBFACTORS

M. KHOSHKAM AND B. MASHOOD

(Communicated by Palle E. T. Jorgensen)

ABSTRACT. Let $A \subset B$ be factors generated by a periodic tower $A_n \subset B_n$ of finite dimensional C^* -algebras. We prove that for sufficiently large $n, A' \cap B$ is *-isomorphic to a subalgebra of $A'_n \cap B_n$.

Introduction

This paper is mainly concerned with the structure of the relative commutants $A' \cap B$ of a pair $A \subset B$ of type II₁ factors, generated by an infinite ladder $A_n \subset B_n$ of finite dimensional C^* -algebras. If $A_n \subset B_n$ is obtained by iteration of the basic construction on $B_0 \subset B_1$, then it is a well known result of A. Ocneanu that $A' \cap B \subset A'_n \cap B_n$; however, this is not true in general. For example, the tower of higher relative commutants associated with a pair of non-amenable subfactors does not satisfy this property (cf. [8]). We prove a weaker version of this property for general periodic towers . The periodicity is needed to ensure that the Jones index [A:B] is finite. But we do not assume $A_n \subset B_n$ to be a tower of commuting squares. Specifically, we prove that $A' \cap B$ is *-isomorphic to a subalgebra of $A'_n \cap B_n$ for sufficiently large n. This will have several interesting consequences, one being a generalization of (Theorem 1.7, [9]). Our main tool is the perturbation technique developed by E. Christensen in [1]. Given $\epsilon > 0$, we prove that for sufficiently large $n, A' \cap B \subset A'_n \cap B_n$; then we are in a situation to use perturbation theory and get the desired isomorphism. The last section of the paper deals with towers of commuting squares. In particular, we obtain a sufficient condition for a tower $A_n \subset B_n$ to be a tower of commuting squares.

§1. NOTATIONS AND PRELIMINARIES

Let B be a type II₁ factor and let tr be the faithful, normal and normalized trace on B. Denote by $L^2(B, tr)$ the Hilbert space closure of B under the norm given by the inner product $\langle x, y \rangle = tr(y^*x)$. Then, B acts on $L^2(B, tr)$ by left multiplication, and the identity of B is a cyclic and separating vector for B denoted by ξ_0 . The involution $x \to x^*$ extends to a conjugate linear isometry on $L^2(B, tr)$ denoted by J_B . If A is a von Neumann subalgebra of B, let E_A be the conditional expectation

Received by the editors February 11, 1997.

¹⁹⁹¹ Mathematics Subject Classification. Primary 46L37.

 $Key\ words\ and\ phrases.$ Subfactors, von Neumann algebras, Jones index, commutant, commuting squares.

from B onto A associated with the trace, so that $tr(E_A(x)) = tr(x)$ for every $x \in B$. The extension of E_A to $L^2(B, tr)$, denoted by e_A , is the orthogonal projection of $L^2(B, tr)$ onto the closure of A regarded as a subspace of $L^2(B, tr)$. Then, $\langle B, e_A \rangle$ the von Neumann algebra generated by B and e_A is called the basic construction. The following facts from [3] are frequently used in this the paper and are listed below for convenience.

- (a) If $x \in B$, then $x \in A \Leftrightarrow xe_B = e_B x$,
- (b) if $x \in B$, then $e_A x e_A = E_N(x) e_A$,
- (c) $J_B\langle B, e_A\rangle J_B = A'$,
- (d) the map $x \to xe_A$ is an isomorphism of A onto Ae_A ,
- (e) $e_A \langle B, e_A \rangle e_A = A e_A$

The index of A in B, denoted by [B:A], is defined to be $(tr_{A'}(e_A))^{-1}$ if A' is finite and to be infinite otherwise (cf. [3]). It is a remarkable result of Jones that $[B:A] \in \{4\cos^2\frac{\pi}{n}: n=3,4,\cdots\} \cup [4,\infty), A' \cap B = \mathbf{C}$ if [B:A] < 4, and $A' \cap B$ is finite dimensional if $[B:A] < \infty$.

If $A \subset B$ are finite dimensional C^* -algebras with $\{e_i : i = 1, 2, \dots, k\}$ and $\{f_j : j = 1, \dots, l\}$ the sets of minimal central projections of A and B respectively, then the inclusion matrix $T_A^B = (a_{ij})$ is defined by

$$a_{ij} = \begin{cases} 0, & \text{if } e_i f_j = 0; \\ \frac{\dim B_{e_i f_j}}{\dim A_{e_i f_j}} & \text{if } e_i f_j \neq 0. \end{cases}$$

The matrix T_A^B is unique up to permutations of the minimal central projections. It is an important fact that if $\langle B, e_A \rangle$ is the basic construction, then $\langle B, e_A \rangle$ is also finite dimensional and $T_B^{\langle B, e_A \rangle} = (T_A^B)^t$. The inclusion $A \subset B$ may also be described by a bipartite graph called the Bratteli diagram of the pair $A \subset B$, with the blocks of A and B forming the vertices of the graph and the edges being the multiplicities of subfactors of A in the subfactors of B (cf.[2],[3]). Increasing sequences of finite dimensional C^* -algebras (A_n) , (B_n) , with $A_n \subset B_n$, are said to constitute a periodic tower of algebras if for some h and all h we have:

$$T_{B_{n+h}}^{B_{n+h+1}} = T_{B_n}^{B_{n+1}}, \ T_{A_n+h}^{A_{n+1+h}} = T_{A_n}^{A_{n+1}}, \ T_{A_n}^{B_n} = T_{A_{n+h}}^{B_{n+h}}.$$

If there exists a faithful trace on $\bigcup B_n$, then $B = \overline{\bigcup B_n}$ and $A = \overline{\bigcup A_n}$ are the closures with respect to the weak topology induced by the trace. We say that $A \subset B$ is generated by the tower $A_n \subset B_n$. If the inclusion matrices are indecomposable and the tower is periodic, then A and B are factors and $[A:B] < \infty$. A diagram

$$\begin{array}{cccc} A & \subset & B \\ \cup & & \cup \\ C & \subset & D \end{array}$$

of finite dimensional C^* -algebras is called a commuting square with respect to a trace, tr, on B if

$$\begin{array}{cccc}
A & \stackrel{E_A}{\longleftarrow} & B \\
\cup & & \cup \\
C & \stackrel{E_C}{\longleftarrow} & D
\end{array}$$

is a commutative diagram, i.e., for each $x \in D$, $E_A(x) \in C$. The expectations E_A and E_C correspond to the trace, and we assume tr is a Markov trace.

§2. Main results

Near inclusions $A \stackrel{\delta}{\subset} B$ of pairs of von Neumann subalgebras of a type II₁ von Neumann algebra C were studied by E. Christensen in [1]. The relation $A \stackrel{\delta}{\subset} B$ means that for every $x \in A_1$, the unit ball of A, there exists an element $y \in B$ such that $||x-y||_2^{tr} < \delta$, where tr is the faithful, normal, and normalized trace on C. If E_B denotes the canonical trace preserving conditional expectation from C onto B, then

(1)
$$A \overset{\delta}{\subset} B \iff ||x - E_B(x)||_2^{tr} < \delta \ \forall x \in A_1.$$

As we are considering pairs of factors generated by finite dimensional algebras, we only need to consider inclusions $A \subset B$ with B finite dimensional. We need to modify several perturbations lemmas from [1]. However, the main ideas remain the same. Given $\delta > 0$, the following function is frequently needed:

(2)
$$\gamma(\delta) = 2^{\frac{1}{4}} \delta^{\frac{1}{2}} (1 - 2^{\frac{1}{4}} \delta^{\frac{1}{2}})^{-1}.$$

Lemma 2.1. Let B be a finite dimensional subalgebra of a type Π_1 von Neumann algebra C. If tr is the faithful, normal, and normalized trace on B, then there exists a semifinite trace, tr', on $\langle C, e_B \rangle$ such that

(3)
$$tr'(xe_B) = tr(x) \ \forall x \in C,$$
$$tr'(e_B) = 1.$$

Proof. Let e_1, e_2, \dots, e_m be the minimal central projections of B. By [3, Proposition 3.1.5], $f_k = J_C e_i J_C$, $1 \le k \le m$, are the minimal central projections of the semifinite von Neumann algebra $\langle C, e_B \rangle$. Hence, there exists a unique faithful normal semifinite trace, tr', on $\langle C, e_B \rangle$ such that $tr'(f_k e_B) = tr(e_k)$. Using the *-isomorphism $x f_k e_B \to E_B(x) e_k$ from $\langle C, e_B \rangle f_k e_B$ onto Be_k (cf. [3]) and the uniqueness of the trace on the factor Be_k , we have that $tr'(x f_k e_B) = tr(E_B(x) e_k)$ for all $x \in C$. Given $x \in C$, we have

$$tr'(xe_B) = tr'(\sum_{k=1}^m x f_k e_B)$$

$$= \sum_{k=1}^m tr'(x f_k e_B)$$

$$= \sum_{k=1}^m tr(E_B(x) e_k)$$

$$= tr(E_B(x) \sum_{k=1}^m e_k) = tr(x).$$

Let x = 1 in the above to get $tr'(e_B) = 1$.

Lemma 2.2. Let B, C, and e_1, e_2, \dots, e_m be as above. Suppose that A is a von Neumann subalgebra of C such that $A \subset B$ with $\delta < \frac{1}{\sqrt{2}}$ and such that for every minimal projection $q \in B$, $\gamma^2(\delta) < tr(q)$. Then, there exists a *-homomorphism φ from A into B. Moreover, for each x in the unit ball of A we have:

(4)
$$||\varphi(x) - x|| < 26\gamma(\delta) + \delta, \qquad \varphi(I) = I.$$

Proof. If $u \in A$ is unitary, then

$$tr(I - E_B(u^*)E_B(u)) = ||u - E_B(u)||_2^{tr} < \delta^2.$$

If tr' is as in Lemma 2.1, then we have

$$tr'((e_B - u^*e_B u)^2) = tr'(e_B + u^*e_B u - u^*e_B ue_B - e_B u^*e_B u)$$

$$= 2tr(e_B (1 - E_B (u^*)E_B (u))$$

$$= 2tr(I - E_B (u^*)E_B (u))$$

$$< 2\delta^2.$$

As in [1, Theorem 3.1], we can find an element k of minimal trace norm $|| \ ||_2^{tr'}$ in the ultrastrong closed convex hull of the set $\{u^*e_Bu:u \text{ unitary in }B\}$ such that $k \in A' \cap \langle A, e_B \rangle$ and

$$0 \le k \le I$$
, $||k - e_B||_2^{tr'} < 2^{\frac{1}{2}} \delta$.

Since $tr'(e_B) = 1$, by the discussion preceding [1, Lemma 4.1] there exists a projection $q \in A' \cap \langle A, e_B \rangle$ such that

$$||q - e_B||_2^{tr'} \le \gamma(\delta)$$
 and $|1 - tr'(q)| < \gamma(\delta)^2$.

Let $\{f_1, ..., f_m\}$ be the set of minimal central projection of $\langle C, e_B \rangle$ (see Lemma 2.1). Then,

$$|tr'(qf_n) - tr'(e_B f_n)| = |tr'((q - e_B)f_n))|$$

$$\leq |tr'(q - e_B)|$$

$$= |1 - tr'(q)|$$

$$< \gamma(\delta)^2.$$

Since the factor $\langle C, e_B \rangle f_k$ is isomorphic to Be_k and $tr(p) > \gamma(\delta)^2$ for every projection $p \in B$, the above inequality implies that $tr'(qf_k) = tr'(e_B f_k)$. Hence, $qf_k \sim e_B f_k$. Let $v_k \in \langle C, e_B \rangle f_k$ be a partial isometry such that $v_k v_k^* = qf_k$ and $v_k^* v_k = e_B f_k$. Then, $q \sim e_B$ via the partial isometry $v = v_1 + v_2 + \cdots + v_m$. It is easy to check that $m \to v^* mv$ is a homomorphism from A into $\langle C, e_B \rangle e_B = Be_B$. Let φ be the composition of this with the canonical identification of Be_B with B. If x is in the unit ball of A, then by [2, Lemma 4.1], $||\varphi(x) - E_A(x)|| < 26\gamma(\delta)$. Since $||x - E_A(x)|| < \delta$, the inequality (4) follows.

Proposition 2.3. Let $A \subset B$ be factors generated by the tower $A_n \subset B_n$ such that $[B:A] < \infty$. Then, given $\epsilon > 0$, there exists N > 0 such that:

$$A' \cap B \subset A'_n \cap B_n \, \forall n > N.$$

Proof. Since $B = \overline{\bigcup B_n}$, given x in the unit ball of $A' \cap B$ there exist an integer n and $y \in B_n$ such that $||x - y||_2^{tr} < \frac{\epsilon}{3}$. Hence, $||x - E_{B_n}(x)||_2^{tr} < \frac{2\epsilon}{3}$. Since $[B:A] < \infty$ by [3, Corollary 2.2.3] $A' \cap B$ is finite dimensional, and we may use a standard compactness argument and find a positive N such that

(6)
$$\|x - E_{B_n}(x)\|_2^{tr} < \epsilon \, \forall x \in (A' \cap B)_1 \text{ and } \forall n > N.$$

It is easy to see that if $x \in A' \cap B$, then $E_{B_n}(x) \in A'_n \cap B_n$ and hence $A' \cap B \subset A'_n \cap B_n$ by (6) and (1).

Lemma 2.4. Let $A \subset B$ be factors generated by $A_n \subset B_n$. If $\limsup ||T_{A_n}^{B_n}|| \leq \infty$, then $[A:B] < \infty$.

Proof. It follows from [5, Propositions 2.6 and 3.4] that the entropy $H(B,A) \leq \limsup ||T_{A_n}^{B_n}||$. If $A' \cap B$ had a completely non-atomic part, then as in the proof of [5, Theorem 4.4] we conclude that $H(B,A) = \infty$, which contradicts the earlier statement. Hence, $A' \cap B$ must be atomic and by [5, Theorem 4.4], we conclude that $[B:A] < \infty$.

Corollary 2.5. Let $A \subset B$ be generated by a periodic tower $A_n \subset B_n$. Then, given $\varepsilon > 0$, there exists N such that

$$A' \cap B \overset{\varepsilon}{\subset} A'_n \cap B_n \, \forall n > N.$$

Proof. If $A_n \subset B_n$ is periodic, then the hypothesis of Lemma 2.4 is satisfied and hence $[A:B] < \infty$. Now Proposition 2.3 can be used.

Theorem 2.6. Let $A \subset B$ be factors generated by $A_n \subset B_n$ and let $\{e_n^k\}_k$ be the set of minimal central projections of A_n . Suppose that

- (a) $[B:A] < \infty$,
- (b) $\lim_{k \to \infty} \inf(tr(e_n^k)) > 0$,
- (c) there exists r > 0 such that for every n and every minimal projection $p \in A'_n \cap B_n$ we have tr(p) > r.

Then $A' \cap B$ is *-isomorphic to a subalgebra of $(A'_n \cap B_n)_{e_n^k}$ for sufficiently large n.

Proof. Choose d>0 such that $\liminf_{k,n} tr(e_n^k)>d>0$ and choose $\epsilon>0$ such that $\epsilon<\frac{1}{\sqrt{2}},\,\gamma^2(\epsilon)< r,$ and $\gamma(\epsilon)+\epsilon< tr(p)$ for every minimal projection p in the finite dimensional algebra $A'\cap B$. Next choose $\delta>0$ such that $\frac{\delta}{d}<\epsilon$. By Proposition 2.3 there exists N such that $A'\cap B\subset A'_n\cap B_n$ when n>N. Let $\tilde{t}r(x)=\frac{tr(x)}{tr(e_n^k)}$ for $x\in (B_n)e_n^k$. Then $\tilde{t}r_r$ is the canonical normalized trace on $(B_n)_{e_n^k}$, and we obtain

$$(A' \cap B)_{e^k} \overset{\frac{\delta}{d}}{\subset} (A'_n \cap B_n)_{e^k} \ \forall k$$

where the above near inclusion is with respect to the $\tilde{t}r$ norm. Since, $\frac{\delta}{d} < \epsilon$ we have that

$$(A' \cap B)_{e_n^k} \stackrel{\epsilon}{\subset} (A'_n \cap B_n)_{e_n^k} \ \forall k, n > N.$$

By the choice of ϵ the hypothesis of Lemma 2.2 is satisfied, and hence there exists a *-homomorphism φ from $(A' \cap B)_{e_n^k}$ into $(A'_n \cap B_n)_{e_n^k}$. If $\varphi(x) = 0$ for some $x \in (A' \cap B)_{e_{k,n}}$, then $\varphi(p) = 0$ for some projection. By (4), $tr(p) < \gamma(\epsilon) + \epsilon$. This contradicts the choice of ϵ . Hence, φ must be one to one. Finally, as $e_n^k \in A$ and A is a factor, $(A' \cap B)_{e_n^k}$ is *-isomorphic to $A' \cap B$, and the proof is complete. \square

Theorem 2.7. Suppose that $A \subset B$ is generated by a periodic tower $A_n \subset B_n$ of finite dimensional C^* -algebras, then $A' \cap B$ is *-isomorphic to a subalgebra of $A'_n \cap B_n$.

Proof. Since $A_n \subset B_n$ is periodic by Corollary 2.5, the index [B:A] is finite. Conditions (b) and (c) of Theorem 2.6 are satisfied here because the inclusion matrices are periodic. We refer to [9] for a proof of this fact. Hence the result follows from Theorem 2.6.

The following generalizes Theorem 1.7 of [9] in the sense that $A_n \subset B_n$ is not assumed to be a tower of commuting squares.

Corollary 2.8. If $A \subset B$ and $A_n \subset B_n$ are as above and there exists m > 0 such that $(A'_n \cap B_n)_{e_{k,n}} = \mathbf{C}$ for some k and every n > m. Then $A' \cap B = \mathbf{C}$.

Proof. Follows directly from Theorems 2.5 and 2.7.

Corollary 2.9. If $A \subset B$ and the tower $A_n \subset B_n$ are as before, and for a sequence (n_k) the inclusion matrix $T_{A_{n_k}}^{B_{n_k}}$ has a column (or a row) of exactly one nonzero entry equal to one, then $A' \cap B = \mathbb{C}$.

Proof. Our hypothesis implies that for some l, $(A'_{n_k} \cap B_{n_k})_{e_{l,n_k}} = \mathbf{C}$ for all n_k . Now the result follows from Corollary 2.8.

Proposition 2.10. Let $A \subset B$, with $[B:A] < \infty$, be factors generated by a tower $A_n \subset B_n$ of commuting squares. Let $\{e_n^k\}$ and $\{f_n^l\}$ be the set of minimal central projections of A_n and B_n respectively and suppose that $\liminf_{k,n} (tr(e_n^k)) > 0$. Then, for sufficiently large $n, A' \cap B$ is *-isomorphic to a subalgebra of $A'_n \cap B_n$.

Proof. By [5, Proposition 2.6] $[B:A] = \lim \lambda(B_n:A_n)^{-1}$, and by [6, Theorem 2.3] $\lambda(B_n,A_n)^{-1} = \max_l(\sum_k a_{kl}^2 tr(e_n^k)/tr(e_n^k f_n^l))$ where a_{kl}^2 is just the dimension of $(A'_n \cap B_n)e_n^k f_n^l$. Hence, there exists N such that for every n > N we have

$$a_{kl}^2 tr(e_n^k)/tr(e_n^k f_n^l) \leq [B:A].$$

Equivalently, for n > N

$$\frac{tr(e_n^k f_n^l)}{a_{kl}^2} \ge \frac{tr(e_n^k)}{[B:A]}.$$

Now the left hand side of the above inequality is the trace of minimal projections in $(A'_n \cap B_n)e_n^k f_n^l$. Given that $\liminf tr(e_n^k) > 0$, it follows that condition (c) of Theorem 2.6 is satisfied here, and the result follows from that theorem.

§3. Remarks on commuting squares

An important tool in construction and the study of subfactors is the concept of commuting squares (see Section 1 for the definition), developed my M. Pisner and S. Popa (cf. [5]), and used by many authors in relation with Jones index theory (cf. [4], [7], [9]). The construction and classification of subfactors are closely related to those of commuting squares. The results of this section are along these lines. If $B_2 = \langle B_1, e_1 \rangle$ is the basic construction on $A_1 \subset B_1$ and if $A_2 = \langle A_1, e_1 \rangle$, then the following is a commuting square:

$$\begin{array}{cccc}
A_2 & \subset & B_2 \\
\cup & & \cup \\
A_1 & \subset & B_1
\end{array}$$

By iterating the above procedure we obtain the tower $A_n \subset B_n$ of commuting squares. Note that the algebra A_n contains the set $\{e_1, e_2, ..., e_{n-2}\}$ of projections corresponding to the basic construction. We want to show that the converse is also true in the following sense. Namely, let the tower $B_n \subset B_{n+1}$ be obtained by iterating the basic construction on the pair of finite dimensional C^* -algebras $B_1 \subset B_2$, and let $\{e_n\}$ be the corresponding Jones' projection. Suppose that $\{A_n\}$ is an increasing sequence of C^* -algebras with $A_n \subset B_n$ such that for $n \geq 3$, A_n

contains the set $\{e_1, e_2, ..., e_{n-2}\}$. Set $A = \overline{\bigcup A_n}$, $B = \overline{\bigcup B_n}$ and $\tilde{A}_n = A \cap B_n$, where the closures are in the sense of the weak operator topology. With these notations, we state the following.

Proposition 3.1. $\tilde{A}_n \subset B_n$ is a tower of commuting squares. Moreover, if $[B:A] < \infty$, then the tower $\tilde{A}_n \subset B_n$ is periodic.

Proof. We must show that if $y \in \tilde{A}_n$, then $E_{B_{n-1}}(y) \in \tilde{A}_{n-1}$. Since $e_n e_{n-1} e_n = \lambda e_n$ with $\lambda^{-1} = ||T_{B_1}^{B_2}||$, we have that

$$e_n e_{n-1} y e_{n-1} e_n = e_n E_{B_{n-1}}(y) e_{n-1} e_n$$

= $E_{B_{n-1}}(y) e_n e_{n-1} e_n$
= $\lambda E_{B_{n-1}}(y) e_n$.

Hence, $e_n E_{B_{n-1}}(y) \in \tilde{A}_{n+2} \subset A$. It follows that $e_m E_{B_{n-1}}(y) \in A$ for all $m \geq n$. Hence, $e_n \vee e_{n+1} \vee \cdots \vee e_m E_{B_{n-1}}(y) \in A$ for m > n. Since $tr(1 - e_{n+1} \vee \cdots \vee e_m)$ converges to zero as m tends to infinity (cf. §4, [2]), the projections $e_n \vee \cdots \vee e_m$ converge to the identity as m tends to infinity. Hence, $E_{B_{n-1}}(y) \in A \cap B_{n-1} = \tilde{A}_{n-1}$, proving the first statement. When $[B:A] < \infty$ the periodicity is a consequence of the fact that $[B:A] = \lim[B_n:A_n]$ (cf. [5]).

We obtain the following corollary regarding intermediate subfactors.

Corollary 3.2. Let $A_n \subset B_n$ be obtained by the basic construction and let C be a middle subfactor, $A \subset C \subset B$. Then there exists a periodic tower of commuting squares $A_n \subset C_n \subset B_n$ such that $C = \lim C_n$.

Proof. Let
$$C_n = B_n \cap C$$
 and apply the previous lemma.

The following theorem shows that for factors $A \subset B$ generated by a tower $A_n \subset B_n$ the existence of proper intermediate subfactors may be reduced to a finite dimensional problem.

Theorem 3.3. Let $A \subset B$ be generated by the tower $A_n \subset B_n$ given by the basic construction. Then there exists a proper middle subfactor C if and only if, for some n, there exist C^* -algebras $C_n \subset C_{n+2}$ such that

$$A_{n+2} \subset C_{n+2} \subset B_{n+2},$$

 $A_n \subset C_n \subset B_n,$

with
$$T_{C_n}^{B_n} = T_{C_{n+2}}^{B_{n+2}}$$
.

Proof. The only if part follows from the previous corollary. Now suppose that $C_n \subset C_{n+2}$ are as in the statement of the theorem. Since the identity is in $A_{n+2} \cap C_{n+2}$, for every minimal central projection q in C_{n+2} , qe_n is a nonzero projection. Then $e_n E_{B_n}(C_{n+1}) = e_n C_{n+1} e_n$ is a subset of $e_n(C_{n+2}) e_n = (C_n)_{e_n}$. The last equality holds because

$$(C_n)_{e_n} \subset (C_{n+2})_{e_n} \subset (B_{n+2})_{e_n} = (B_n)_{e_n}$$

and $T_{C_n}^{B_n}=T_{C_{n+2}}^{B_{n+2}}$. Therefore, $E_{B_n}(C_{n+1})\subseteq C_n$. But $C_n\subseteq E_{B_n}(C_{n+2})$, whence $E_{B_n}(C_{n+1})=C_n$. This shows that

$$\begin{array}{cccc} C_{n+1} & \subset & B_{n+1} \\ \cup & & \cup \\ C_n & \subset & B_n \end{array}$$

is a commuting square, and it is easy to see that $C_{n+2} = \langle C_{n+1}, e_n \rangle$. Then C can be constructed inductively.

References

- Christensen, E., Subalgebras of a finite algebra., Math. Ann. 243 (1979), 17–29. MR 80i:46051
- [2] Goodman, F., De La Harpe, P.S., Jones, V.F.R., Coxeter graphs and towers of algebras, Math. Sci. Res. Hist. Publ., Springer-Verlag 14 (1989). MR 91c:46082
- [3] Jones, V., Index for subfactors, Invent. Math. 72 (1983), 1–25. MR 84d:46097
- [4] Ocneanu, A., Quantized groups, string algebras and Galois theory for von-Neumann algebras, Operator algebras and applications, London Math. Soc. Lecture Notes ser. 136 119–172, Cambridge Univ. Press, 1988. MR 91k:46068
- [5] Pimsner, M., Popa, S., Entropy and index for subfactors., Ann. Sci. Ecole Norm. Sup. 19 (1986), 57–106. MR 87m:46120
- [6] Pimsner, M., Popa, S., Finite dimensional approximation for pair of algebras and obstruction for index, J. Func. Anal. 98 (1991), 270–291. MR 92g:46076
- [7] Popa, S., Classification of subfactors, reduction to commuting squares, Invet. Math. 101 (1990), 19–43. MR 91h:46109
- [8] Popa, S., Classification of amenable subfactors of type II, Acta Math. 172 (1994), 163–255.MR 95f:46105
- [9] Wenzl, H., Representation of Hecke algebras and subfactors, Thesis, University of Pennsylvania.

Department of Mathematics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, Saskatchawan, Canada 87N 5E6

E-mail address: khoshkam@math.usask.ca