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Abstract. A generalisation and a new proof are given of a recent result of
J. F. Thomsen (1996), which says that for L a line bundle on a smooth toric
variety X over a field of positive characteristic, the direct image F∗L un-
der the Frobenius morphism splits into a direct sum of line bundles. (The
special case of projective space is due to Hartshorne.) Our method is to inter-

pret the result in terms of Grothendieck differential operators Diff(1)(L, L) ∼=
HomO

X(1) (F∗L, F∗L), and T -linearized sheaves.

1. Introduction

All varieties are, for simplicity, assumed to be defined over an algebraically closed
field k of positive characteristic p.

Our argument for the theorem of Thomsen, described in the abstract, is as
follows: On a toric variety all invertible sheaves L are equipped with a linearization
over the torus T ([F, 3.4]). This implies naturally that the algebra of distributions
on T , Dist(1)(T ), acts on F∗L, and hence this module splits as a direct sum of
locally free modules according to the central idempotents. By restricting to the
open orbit, and using that Dist(1)(T ) is commutative semi-simple, one sees then
that the summands have rank 1. This argument amounts to using global differential
operators, and it enables us to avoid the description of the toric variety in terms of
a fan, which Thomsen uses, though it is, of course, really only a slightly fancy way
to work with gradings on L. Furthermore the argument, applied to an arbitrary,
not necessarily locally free, T -linearized module M , on a not necessarily smooth
toric variety, continues to have some content. It then says that F∗M splits into a
sum of pn T -linearized modules, where the rank of T is n (Theorem 2). We will
now explain the terminology and give details.

2. Linearization

Suppose that G is an affine algebraic group and X an algebraic variety with
an action µ : G × X → X of G. Let p : G × X → X be the projection on the
second factor. Then a quasi-coherent OX -module M is G-linearized, if there is an
isomorphism θ : µ∗M ∼= p∗M , satisfying a certain relation, which may be found in
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e.g. Mumford’s book on geometric invariant theory [M, I.3, p. 30]. If X is affine, θ
defines a map

θc : M → µ∗M → p∗M ∼= OG ⊗k M,

and the relation then says that M is a comodule for the Hopf algebra OG. Dually,
if g ∈ G(k) defines a map g : X 3 x 7→ gx ∈ X , then by pulling back to a section
g×X ⊂ G×X , the existence of θ implies that there is an isomorphism g∗M ∼= M ,
and the relation then says that these isomorphisms compose compatibly with group
multiplication.

On toric varieties vector bundles, linearized with respect to the torus, have been
studied by Kaneyama [K1], [K2], while linearized modules that are not even neces-
sarily coherent have been used in D-module-theory on Borel varieties (see e.g. [B1,
VII.12.11], [B]). Interesting examples are local cohomology modules Hi

Y (X, OX),
where Y is an orbit for G. Kaneyama gives an equivalent description of linearized
vector bundles in terms of T -graded modules associated with the fan, which is
possible to adapt to general T -linearized sheaves.

In general linearized modules are, of course, nicest on orbits. Suppose that
π : G → X = G/H , for a subgroup H ∈ G. Pulling back a G-linearized coherent
OX -module M by π gives a G-linearized coherent OG-module, and hence it follows,
by faithful flatness of π and the first part of the following proposition, that M
is locally free (in fact it is possible to see that G-linearized modules are precisely
sheaves induced from H-modules, in the sense of e.g. [J, I.5.8]).

Proposition 2.1. The quasi-coherent OG-module M is G-linearized if and only
if it is a bimodule for the Hopf algebra OG. In particular M ∼= OG ⊗k V , for
some vector space V , as bimodules, and hence is locally free. A quasi-coherent
G-linearized module on G/H for H a closed subgroup is locally free.

Proof. The second statement follows from Theorem 3.1.8 in [A]. The first is an
easy verification, while the proof of the last statement was given above.

3. Distributions as differential operators

on direct images of Frobenius

Let I be the ideal of the identity 1 ∈ G and (I(pr)) the ideal in OG which
is generated by pr-th power of elements in I. Define the algebra Dist(r)(G) of
distributions of order less than pr as Hom(OG/(I(pr)), k), with an algebra structure
induced by the comultiplication OG → OG ⊗k OG. (Cf. e.g. [J, Chap. 7].) It may
also be identified with the left invariant global differential operators corresponding
to left multiplication of G on G [J, I, 7.18]. Considered as such

p(g) := (p⊗ 1OG)(∆(g)),

for g ∈ OG, p ∈ Dist(r)(G), and where ∆ is the coproduct of OG. Note that
naturally Dist(r)(G) ⊂ Dist(r+1)(G), and let Dist(G) be the direct limit.

This definition is intimately connected with the Frobenius F := FX/k, defined
by the diagram

X
FX/ spec k

// X(1) //

��

X

��

spec k
Fspec k

// spec k
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where all horizontal maps are the identity on the topological spaces; the lower
horizontal map is just the p-th power map on k, the square is a pullback diagram,
and the composition of the upper horizontal maps is the p-th power map. Note
that the assumption that k is algebraically closed implies that X ∼= X(1), though
not as k-varieties. The following proposition says that the algebra of distributions
acts as differential operators on any linearized module.

Proposition 3.1. If the quasi-coherent OX-module M is G-linearized, then
Dist(r)(G) acts as a k-algebra on F r

∗M ; in fact there is a natural algebra homomor-
phism

Dist(r)(G) → Diff(r)(M, M) ∼= HomO
X(r) (F

r
∗M, F r

∗M).

Proof. (The proof is, for readability, formulated as if X was affine, that is, sup-
pressing all topological information.) From the linearization there is obtained a
map

θ : M → µ∗M → p∗M ∼= OG ⊗k M,

and by definition of Dist(r)(G) there is a map m : Dist(r)(G) ⊗k OG → k. The
action of u ∈ Dist(r)(G) is then defined as

Dist(r)(G)⊗k M
1⊗θ−→ Dist(r)(G) ⊗k OG ⊗k M

m⊗1M−→ M.

(Note that this also gives the action of Dist(r)(G) as differential operators on OG.)
The map above actually commutes with multiplication by f ∈ OX(r) : Note first
that, corresponding to the statement that 1 acts as the identity on X , the composite
map

OX
µ∗→ OG ⊗k OX

α⊗Id−→ (OG/I)⊗k OX
∼= OX ,

where α is the map corresponding to the inclusion 1 ∈ G, is the identity. This
means that, if f ∈ OX and µ∗(f) =

∑
gi ⊗ fi, then f =

∑
α(gi)fi. Secondly,

if h ∈ OG(r) , then h ∼ α(h) (mod I(r)) and hence p(hk) = α(h)p(k), if k ∈ OG

and p ∈ Dist(r)(G). Assume now that θ(m) =
∑

hi ⊗ mi, that f ∈ OX(r) and
µ∗(f) =

∑
gi ⊗ fi and note that fi ∈ OX(r) and gi ∈ OG(r) . Then

p(fm) = p(µ∗(f)(θm)) =
∑
ij

p(gjhi)⊗ fjmi =
∑
ij

α(gj)p(hi)⊗ fjmi

=
∑

i

p(hi)⊗
∑

j

α(gj)fj

 mi = f(pm)

as was to be shown. We omit the verification that the map is an algebra homomor-
phism. The identification with differential operators, due to Cartier, may be found
in e.g. [B, Y] and in the references given there.

4. Distributions on torii

The preceding proposition thus implies that the direct image under the Frobenius
of a G-linearized OX -module splits into a direct sum of OX -modules according
to the central idempotents in Dist(r)(G). When are there many such? By the
result of Nagata, formulated for group schemes in [DG, IV.3.3.6, p. 509] the only
connected affine algebraic groups (in positive characteristics) which are linearly
reduced—all representations split into a direct sum of simple representations—are
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the multiplicative groups. By the identification of Dist(r)(G)-modules and modules
over the infinitesimal Frobenius kernels G(r) (see [J, I.8.6, 9.4]), this implies that the
torii (together with infinitesimal subgroups) are the only connected affine algebraic
group schemes with algebras of distributions that are semi-simple as rings. So now
let the group be a torus T , of rank n and identify

OT
∼= k[x1, x

−1
1 , . . . , xn, x−1

n ].

Then Dist(r)(T ) ∼= ∏i=n
i=1 Dist(r)(Gm) is described in e.g. [J], and it is indeed easy

to construct an algebra isomorphism

Dist(r)(T ) ∼=
i=(pr−1)n⊕

i=1

k,(1)

by exhibiting the corresponding central idempotents explicitly. We do this for
completeness. Let X(r)(T ) be the set of characters λ of T of the form (t1 · · · tn) →
tλ1
1 · · · tλn

n , where λ = (λ1, . . . , λn) and 0 ≤ λs < pr, for 1 ≤ s ≤ n. The idempotents
may be calculated as follows. If m is a positive integer, let m =

∑
i≥0 m(i)pi,

0 ≤ m(i) ≤ p− 1, be its p-adical expression. Then for λ ∈ X(r)(T ), define

Pλ =
s=n∏
s=1

j=r−1∏
j=1

i=p−1∏
i=0

i6=λ(j)
s

(−1)λ(j)
s −1(i− δ(pj)

s ).

Here δ
(pj)
s denotes the differential operator acting on k[Ts, T

−1
s ] by δ

(pj)
s T k

s =
(

k
pj

)
=(

k(j)

1

)
= k(j) [J, 7.8]. (We use the fact that, mod p,

(
m
k

)
=

∏
i

(
mi

ki

)
.) An application

of Wilson’s theorem gives that PλT k = T k if k = λ (mod pr) and PλT k = 0
otherwise, and hence that the Pλ are indeed idempotent, acting on the faithful
module OT . That they form a complete system follows from the fact that given a
Dist(T )-module M ∼= ⊕

µ Mµ, where the µ are weights,

PλM =
⊕

µ=λ (mod pr)

Mµ.

5. The splitting of direct images under the Frobenius

on toric varieties

Theorem 1 (compare [T]). Let X be a smooth toric variety and let M be a T -
linearized quasi-coherent OX-module. For any integer r ≥ 1

F r
∗M ∼=

⊕
λ∈Xr(T )

PλM.

If M is locally free, then each PλM is also locally free, and the rank of PλM is
equal to the rank of M . In particular, for L an invertible sheaf F r∗L is isomorphic
to a direct sum of invertible sheaves.

Proof. If X is smooth, then F r
∗OX is locally free and if furthermore M is locally

free, then F r∗M is also locally free. As a direct summand of a locally free module,
it is then clear that PλM is locally free. To check the equality of ranks, it suffices
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to restrict to the open orbit T and consider OT , by Proposition 2.1, and then the
assertion is immediate, since

PλOT =
⊕

α∼λ (mod p)

kxα ∼= OT (r)xλ.

For a toric variety, a line bundle is T -linearizable [F, 3.4], and the result of Thomsen
follows.

The following is an extension of this result.

Theorem 2. Let X be a toric variety and let M be a T -linearized quasi-coherent
OX-module. For any integer r ≥ 1

F r
∗M ∼=

⊕
λ∈Xr(T )

PλM,

where the PλM are T (r) ∼= T -linearized quasi-coherent modules on X(r) ∼= X.

Proof. Set P := Pλ. The following example perhaps makes the proof more enlight-
ening. Take M = OT itself; it is an OT -comodule with θ(T k) := ∆T k = T k ⊗ T k.

Note first that POT =
⊕

α∼λ(mod p) kxα ∼= OT (r)xλ
η∼= OT (r) is a subcoalgebra,

isomorphic as a coalgebra to the Hopf algebra OT (r) . (That POG is a subcoalgebra
is easily seen to be true for any group G and central idempotent P ∈ Dist(r)(G).)
Now define the T (r)-linearization by Pθ : POT → OT (r) ⊗ POT , Pθ = (η ⊗ 1) ◦ θ,
or Pθ(T λ+pβ) = T pβ ⊗ T λ+pβ. This has the desired properties, since, with this
comodule structure there is an isomorphism of OT (r) -bimodules OT (r) ∼= POT , and
OT (r) certainly is linearized (that the OG-module M is a bimodule means that the
map θ : M → OG×M satisfies θ(fm) = ∆(f)θm, and this clearly is what is needed
for the comodule map θ to induce a linearization ∆∗M → p∗M).

Now first suppose that X is affine and that θ : M → OG ⊗M is the comodule
map. We first want to show that

θ : PM → POT ⊗ PM.

Since the hyper-algebra is cocommutative (or P -central), (P⊗1OG)g = (1OG⊗P )g,
g ∈ OG, and since P is an idempotent, (P ⊗P ) ◦∆ = P . Hence, remembering that
∆⊗ 1M ◦ θ = 1OT ⊗ θ ◦ θ, we have

(1OG ⊗ P )(θm) = (1OG ⊗ P ⊗ 1M )((1OG ⊗ θ)(θm))

= (1OG ⊗ P ⊗ 1M )((∆⊗ 1M )(θm))

= (P ⊗ 1OG ⊗ 1M )((∆⊗ 1M )(θm))

= (P ⊗ 1OG ⊗ 1M )((1OG ⊗ θ)(θm)) = (P ⊗ θ)(θm)

= θ((P × 1M )(θm)) = θ(Pm),

and similarly

(P ⊗ 1M )(θm) = (P ⊗ 1OG ⊗ 1M )((∆ × 1M )(θm))

= (P ⊗ 1OG ⊗ 1M )((1OG ⊗ θ)(θm)) = (P ⊗ θ)(θm)

= θ((P × 1M )θm) = θ(Pm).

The counit pOG → k is defined by restriction. Hence we have shown that PM
is a comodule for POT . Now, precisely as in the example of OT above, use the
coalgebra isomorphism POT

∼= OT (r) , to define an (η ⊗ 1)-comodule structure



3452 RIKARD BØGVAD

θλ = (η ⊗ 1) ◦ θ : PM → OT (r) ⊗ PM . Let us first check that this structure
is compatible with multiplication by elements f ∈ OX(r) , and hence such that
θf ∈ OG(r)⊗OX(r) (we use θ for the comodule map of OX , which by restriction gives
the comodule map of OX(r)). This means that θλ(fm) = (θf)θλm, if m ∈ PM .
But this follows from the corresponding property of M , combined with the fact
that P commutes with all p-th powers, which implies that η is OT (r) -linear.

It only remains to check that the induced linearization map is an isomorphism.
We need more information on the comodules for OT . Namely that representations
split into homogeneous components, and that if θm =

∑
i gi ⊗mi, then g−1

i ∈ OT ,
but this is clear, since, if m =

∑
µ∈X(T ) mµ is a decomposition into homogeneous

elements, then θm =
∑

µ∈X(T ) T µ ⊗ mµ (T µ is the monomial with weight µ).
Consider then the commutative diagram

OG×X ⊗OX ,µ F∗M
θ // OG ⊗OX M

OG(r)×X(r) ⊗O
X(r) ,µ PM

V1

OO

θ // POG(r) ⊗k PM.

V2

OO

The vertical maps are the obvious ones based on inclusions of the modules con-
cerned. There is an evident splitting of V2 defined by Π2(g ⊗m) = P (g) ⊗ P (m)
and correspondingly a splitting of V1 is defined by

Π1(g ⊗m) := Pλ−ν(m)(g)⊗ P (m)

if g ∈ OT , m ∈ Mν(m). Here Pλ−ν(m) is the projection operator in Dist(r)(T )
belonging to λ − ν(m) ∈ X(r)(T ) = X(T )/prX(T ). This is a well-defined map,
noting first that the relation gx⊗m = gT−ν(x) ⊗ xm, if x ∈ (OX)ν(x), means that
every element in the definition set may be written in the form g ⊗ m. Secondly,
P (m) 6= 0 implies that λ = ν(m) (mod pr), and hence Pλ−ν(m)(g) ∈ OT (r) , so that
the map goes to the right target also.

It is also easy to check that Π1 ◦ V1 = 1. Assume everything homogeneous:
Π1(g ⊗m) := Pλ−ν(m)(g)⊗ P (m) = g ⊗m, if m ∈ P (M), implying that ν(m) ∼ λ
(mod pr), and if g ∈ OT (r) . This implies that V1 is an injection and hence the
lower θ is also an injection, by commutativity of the diagram. Since moreover
Π2 ◦ θ = θ ◦Π1, since Π2 ◦ θ(g ⊗m) = P (gT ν(m))⊗ P (m), while θ ◦ Π1(g ⊗m) =
θ(Pλ−ν(m)(g)⊗P (m)) = (Pλ−ν(m)(g)T ν(m))⊗P (m), it is clear that θ is a surjection.

The definition of the linearization clearly glues from T -invariant open subvarieties
and hence this finishes the proof of the theorem.

(It should perhaps be noted that it is possible to give a version for actions of
infinitesimal groups as well.)

6. Frobenius splitting

A Frobenius splitting F∗OX → OX is a splitting of the inclusion OX → F∗OX ;
see [MR] for this concept in a geometric setting and [HR] for the commutative
algebraic version. Such a splitting is easily seen to be a special type of differential
operator (for details see e.g. [B]), and the well-known Frobenius splitting of toric
varieties (see e.g. [HR, Theorem 5.53]) is actually induced by the globally defined
differential operator P0 ∈ Dist(1)(T ) (defined in the previous section). It may be
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asked whether there are other groups with such nice elements in their algebra of
distributions. But the answer is negative, as proved in the proposition below.

Let us first see that P0 ∈ Dist(1)(T ), the central idempotent corresponding to
the trivial character, indeed gives such a splitting; actually we will prove this for
an arbitrary toric variety X . This is essentially only an argument on the grading,
and the normality is essential for having P0(OX) = OX(1) . (But see [HR].) Let the
group algebra of the character group M ∼= Zn of T be k[M ] :=

⊕
m∈M ke(m) with

multiplication defined by e(m1)e(m2) = e(m1 +m2). The Frobenious map on k[M ]
is determined by F (e(m)) = e(pm) and the splitting P0 is given by

P0(e(m)) =

{
e(m1), if pm1 = m,

0, otherwise.

Suppose that k[S] ⊂ k[M ] is the monoid algebra of a finitely generated sub-
monoid S ⊂ M . Then the splitting P0 clearly induces a splitting of k[S] precisely
when pM ∩ S = pS. This is a property weaker than the property of S to be satu-
rated (which is the same property when p is an arbitrary integer). A toric variety
is constructed by gluing a set of Ui = spec k[Si] for some finitely generated satu-
rated submonoids Si of M , along open sets of the same type (cf. [O, Prop. 1.1-2]).
Obviously P0 as above defines compatible maps on each of the k[Si] and hence the
first (well-known) part of the following proposition is clear.

Proposition 6.1. The element P0 ∈ Dist(1)(T ) induces a Frobenious splitting of
all toric varieties. Torii are the only connected algebraic groups G with an element
a ∈ Dist1(G) which induces a Frobenius splitting for k[G].

Proof. An argument for the last part is almost present in the proof given in [DG, p.
509] of Nagata’s theorem, mentioned earlier. Translated into terms of distributions
this proof actually proceeds by proving that the assumption of linear reducibility
implies the existence of a Frobenius splitting of OG stemming from an element which
is central in the whole Dist(G), and that this in its turn implies that the group is
a torus. But the last part of the proof is true under the slightly weaker hypothesis
on the existence of splittings given in our proposition. We now give this argument,
using [DG, Lemme 3.3.7] which says that it suffices to show that G contains no
subgroup isomorphic to pαk. Assume that there is such a subgroup, and that a is a
splitting. Then there is an inclusion of rings Dist(1)(pαk) = k[u]/(up) ⊂ Dist(1)(G)
and in fact Dist(1)(G) is a free Dist(1)(pαk)-module by a Poincaré-Birkhoff-Witt
theorem. Let vi, i = 1, . . . , m, be a basis. Then a =

∑i=m
i=1 wivi, wi ∈ Dist(1)(pαk).

By the property ua = 0, it is clear that uwi = 0, i = 1, . . . , m. In particular each
wi ∈ kup−1 and hence a is contained in the maximal ideal generated by Lie(G) and
so 1 = a(1) = 0. This is a contradiction proving the proposition.
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