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SMOOTHLY EMBEDDED SPHERES
IN SYMPLECTIC 4-MANIFOLDS
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(Communicated by Ronald A. Fintushel)

Abstract. We characterize rational or ruled surfaces among all symplectic
4-manifolds by the existence of certain smoothly embedded spheres.

1. Introduction

In 1989, McDuff [M1] characterized rational or ruled surfaces among all sym-
plectic 4-manifolds by the existence of any symplectically embedded sphere with
nonnegative intersection.

In this note, using Taubes’s remarkable results on Seiberg-Witten invariants
of symplectic 4-manifolds, we show that rational or ruled surfaces can be further
characterized among all symplectic 4-manifolds by the existence of certain smoothly
embedded spheres. More precisely, we have

Theorem 1. Let M be a symplectic 4-manifold with symplectic canonical class K.
If F ∈ H2(M ;Z) is represented by a smoothly embedded sphere with self-intersection
−1 and K(F ) 6= ±1, then M is rational or ruled, and after an orientation-preserving
diffeomorphism, up to sign, F is Z-homologous to a symplectic −1 curve with re-
spect to the new symplectic form.

Corollary 2. Let M be a symplectic 4-manifold. If there is a smoothly embedded
sphere with nonnegative self-intersection and of infinite order in H2(M ;Z), then M
is rational or ruled, and there is a symplectically embedded sphere with nonnegative
self-intersection.

Another result we obtain is

Corollary 3. Let M be a symplectic 4-manifold, which is not rational nor ruled.
Then every smoothly embedded −1 sphere is Z-homologous to a symplectic −1 curve
up to sign. If M is the blow up of a minimal symplectic 4-manifold with E1, . . . , El

represented by exceptional curves, then the Ei are the only classes represented by
a smoothly embedded −1 sphere, hence any orientation-preserving diffeomorphism
maps Ei to some ±Ej.

Our Theorem 1, Corollary 2 and Corollary 3 are generalizations of the relevant
results in [B] and [FM], where Brussee, Friedman and Morgan worked in the cate-
gory of Kähler surfaces. Fintushel and Stern [FS1] already showed that the manifold
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M in Corollary 2 must have b+2 = 1. However, there are non-Kähler symplectic
4-manifolds with b+2 = 1, and many simply connected examples were constructed
recently by Fintushel and Stern [FS2].

Liu [Liu] gave some other very interesting characterizations of rational and ruled
surfaces. McDuff [M3] proved that rational or ruled surfaces are the only symplectic
4-manifolds with possibly more than two minimal reductions. This also follows from
Corollary 3.

The author thanks Prof. Edgar Brown and Prof. Shing-Tung Yau for advice and
continuous encouragement. He also thanks Prof. Aiko Liu for useful discussions
and Prof. Dusa McDuff for useful comments which corrected a mistake in an earlier
draft.

2. Proofs

We will prove our results using Taubes’s deep results [T1, T2] on Seiberg-Witten
invariants on symplectic 4-manifolds with b+2 = 1. For a detailed description of
Seiberg-Witten invariants, see [KM], [W], [B], [FM]. We will only briefly describe
some special features of Seiberg-Witten invariants of symplectic 4-manifolds with
b+2 = 1.

On a 4-manifold with b+2 = 1, the second cohomology classes with positive
square form a cone with two connected components. Pick one of them and call it
the forward cone. Given a metric g, there is a unique self-dual harmonic 2-form
ωg for g in the forward cone with ω2

g = 1. For a closed self-dual 2-form µ and a
spinc structure L, define the discriminant ∆L(g, µ) =

∫
(c1(L) − µ)ωg. Given the

choice of the forward cone, SW+(L) and SW−(L) are defined for pairs (g, µ) with
positive and negative discriminant respectively. For a symplectic 4-manifold, the
symplectic form determines a natural choice of the forward cone.

In the following, we also recall some results about pseudo-holomorphic curves
in symplectic 4-manifolds. Let (M,ω) be a symplectic 4-manifold and J a com-
patible almost complex structure. Let φ be a J-holomorphic map from a possibly
disconnected Riemann surface Σ =

∐
Σi to M . For each component Σi, we can

assign a multiplicity mi. We require that the images φ(Σi) of different components
be distinct and that none of them be a single point. φ,Σ and φ′,Σ′ are called
equivalent if their images and assigned multiplicities are the same. We define a
J-holomorphic curve (φ,Σ) to be the equivalence class containing φ,Σ. A −1 curve
is an embedded J-holomorphic rational curve with self-intersection −1.

Recall that Cω is the Fréchet space of smooth almost complex structures which
are compatible with ω. Given J ∈ Cω and α ∈ H2(M ;Z) we use HJ (α) to denote
the space of J-holomorphic curves where

1) Σ is a compact Riemann surface;
2) φ∗[Σ] = α.
Now, let us state Taubes’s remarkable theorems in the case b+2 = 1.

Theorem T1 ([T1]). Let M be a symplectic 4-manifold with b+2 = 1 and symplec-
tic canonical class K. Then SW−(K−1) = ±1.

Theorem T2 ([T2]). Let M , K be as above, and let e ∈ H2(M ;Z). If

SW−(K−1 + 2e) 6= 0,

then the Poincaré dual of e can be represented by a pseudo-holomorphic curve.
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We first give a regularity result for pseudo-holomorphic curves.

Proposition 2.1. Let M be a compact oriented 4-manifold with symplectic form
ω. There is a generic set in Cω whose members have the following property: First,
fix a nonzero class α ∈ H2(M ;Z). Then suppose HJ(α) contains (φ,Σ), and S ⊂ Σ
is the union of those components whose fundamental classes have φ∗-images with
negative square. Then there exists an element (φ̃, Σ̃), such that the image of S̃
under φ̃ is a disjoint union of −1 curves (φ̃|S̃ may not be an embedding, i.e. perhaps
multiply covered) and they do not intersect the image of the other components of Σ̃
under φ̃.

Proof. It is well known (a proof is given in [M4]) that for generic J ∈ Cω, if Ξ is a
connected Riemann surface with genus g and ψ is a J-holomorphic map from Ξ to
M whose image has negative square, then Ξ must be a rational curve, and ψ(Ξ) is
embedded with square −1 (though ψ might not be an embedding).

Let Ξ be a component in S. Suppose φ(Ξ) intersects the image φ(Ω) of another
component Ω. By Ruan-Tian gluing ([RT]), we produce a new component whose
image has nonnegative square and at the same time decrease the multiplicities
on Ξ and Ω by 1. Thus we obtain another element in HJ (α) and denote it by
(φ1,Σ1). By repeating this process a finite number of times, we arrive at an element
(φ̃, Σ̃) ∈ HJ(α) satisfying the requirement in the proposition.

We can start to prove Theorem 1.

Proof of Theorem 1. Given any F ∈ H2(M ;Z), denote by F̌ ∈ H2(M ;Z) the
Poincaré dual of F . Recall that given a smoothly embedded −1 sphere representing
a homology class D, there are diffeomorphisms of M , whose induced action R(D)
on H2(M ;Z) is a reflection along Ď. The argument in the first two paragraphs in
the proof of Theorem A in [LL] gives the following

Lemma 2.2. Let M be a symplectic 4-manifold with b+2 = 1, and let D be repre-
sented by a smoothly embedded sphere with self-intersection −1. Then

SW−(R(D)(K−1 + 2e)) = SW−(K−1 + 2e).

By possibly changingD to −D, we can assumeK−1(D) = l > 0. Reflecting along
D, R(D)(K−1) = K−1+2lĎ. By Lemma 2.2 and Theorem T1, lD is represented by
a pseudo-holomorphic curve. Since lD has negative self-intersection, by Proposition
2.1, we can write lD = kF + T , where F is represented by a −1 curve, k > 0, T
is a pseudo-holomorphic curve (may not be connected) and F · T = 0. Intersecting
with F , we find k is divisible by l and D · F is negative. Notice that we also have

lω(D) = kω(F ) + ω(T ) ≥ lω(F )

where ω is the symplectic form on M .
The key observation is that it must hold that −(l − 1)/2 ≤ D · F ≤ −1. If this

is not the case, i.e. D · F ≤ −(l + 1)/2, then reflecting along D, we get

K−1 + 2F̌ → K−1 + 2(F̌ + Ď)− 2(l + 1 +D · 2F )Ď.

By Lemma 2.2,

SW−(K−1 + 2(F̌ + Ď)− 2(l + 1 +D · 2F )Ď) = SW−(K−1 + 2F̌ ) = SW−(K−1).

Therefore by Theorems T1 and T2, (F −D) + (l+ 1 + 2D · F )D is represented by
a pseudo-holomorphic curve. This is impossible, since ω(D) > ω(F ) > 0.
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If D · F = −(l − 1)/2, then (K−1 + 2F )(D) = 1. By Theorem A in [LL], D can
be represented by a symplectic −1 curve for the symplectic form R(F )(ω). Notice
that −F can also be represented by a symplectic −1 sphere for the symplectic form
R(F )(ω) for the same reason. By the gluing technique of Ruan and Tian [RT]
(or A.2 in [MS]), we can glue the two −1 curves representing −F and D to get
an immersed symplectic sphere with nonnegative self-intersection. This symplectic
sphere has pairing 2 with K−1 + 2F̌ , so by the following theorem of McDuff [M3],
M is rational or ruled.

Theorem (McDuff). Let M be a symplectic 4-manifold with symplectic canonical
class K. If there is a nonnegatively immersed symplectic rational curve whose
pairing with K is less than −1, then M is rational or ruled.

If −(l− 1)/2 < D · F ≤ −1, then D · (K−1 + 2F ) is positive and strictly smaller
than l. By repeating the above process, we complete the proof of Theorem 1.

Proof of Corollary 2. If the embedded sphere has self-intersection l, then by blow-
ing up at l points on this sphere, we get an embedded sphere with self-intersection
zero and represent a class C. If K(C) 6= 0 and K(C) 6= −2, then blowing up once
more, we get a smoothly embedded −1 sphere as in Theorem 1, so the result follows
from Theorem 1.

If K(C) = 0 or K(C) = −2, after possibly changing the orientation, we can
assume that the class C has pairing 1 with K−1. Blow up at a point on it, and
let E be the class represented by the exceptional curve. Then the class C − E
is represented by an embedded sphere satisfying the condition in Theorem A in
[LL], therefore is also represented by a −1 curve. The two −1 curves intersect at
one point, so we can glue them together to get an immersed rational curve with
square zero. It is actually an embedded curve by the adjunction inequality, hence
the theorem follows from McDuff’s result cited in the beginning.

Proof of Corollary 3. Since M is neither rational nor ruled, by Theorem 1, any
embedded sphere with self-intersection −1 has pairing ±1 with K, hence it is Z-
homologous to a −1 curve up to sign by Theorem A in [LL]. Let M be the blow
up of a minimal symplectic 4-manifold with exceptional curves representing classes
E1, . . . , El. If U is represented by an embedded −1 sphere, then U or −U is repre-
sented by a −1 curve. Without loss of generality, we assume that U is represented
by a −1 curve. If U is different from any Ei, and Ei · S = 0, then by the positivity
of intersection [M2], the −1 curve representing U is disjoint from all the exceptional
curves, and can be regarded as a −1 curve on N . But this contradicts the mini-
mality of N . If U is different from any Ei, but Ei · S 6= 0 for some i, then the two
−1 curves representing U and Ei have some positive intersection points. We can
glue them together to get a nonnegatively immersed rational curve whose pairing
with K is less than 1, hence M is rational or ruled by McDuff’s Theorem, again
a contradiction. Therefore U must be one of the Ei. The last statement follows
from the obvious fact that any orientation-preserving diffeomorphism maps the set
of embedded −1 spheres to itself.
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