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RESOLUTION OF SINGULARITIES OF CONVOLUTIONS
WITH THE GAUSSIAN KERNEL

KATHRIN BERKNER

(Communicated by Frederick W. Gehring)

Abstract. We present a complete classification of the zero set of a function
which is a convolution with the Gaussian kernel. In the first part, we calculate
the Taylor expansion of the convolution in a critical point. In the second
part, we resolve the singularity with the help of the general Newton process
which yields the Puiseux expansions for the solutions. Finally, we describe the
resolved singularity in terms of Hermite polynomials.

1. Introduction

We consider the zero set of the function Tθ[f ] : R × R+ → R which is given by
the following convolution integral:

Tθ[f ](b, a) =
1
a

∞∫
−∞

θ(
x− b

a
)f(x)dx,(1)

where f ∈ L2(R) and θ(x) = 1/
√

2π exp (− 1
2x2) denotes the Gaussian function. We

call the function Tθ[f ] a Gauss convolution (because θ is is a symmetric function,
the function Tθ[f ] satisfies the standard definition of a convolution). In a regular
point of the zero set of Tθ[f ], i.e. ∂Tθ [f ]

∂b (b0, a0) 6= 0 or ∂Tθ [f ]
∂a (b0, a0) 6= 0, the implicit

function theorem gives a description of the solution of Tθ[f ] = 0 in a neighborhood
of (b0, a0) as a smooth curve. This case has attracted a lot of interest in the field of
signal processing and has been studied by several authors ([1, 2, 3, 9, 10]). In [7],
the zero set of Tθ[f ] near a critical point is studied with restrictions on f (periodic
and bandlimited) in filter theory and its applications.

Even though the classification problem of zeros of Tθ[f ] arises from applications
in signal processing, it is located in the field of classical real analysis. The analysis
of zeros of Tθ[f ] that are critical points is the contents of this paper. A complete
classification is given by the following main theorem:

Theorem 1.1. Let f ∈ L2
θ(R) = {g : R → R :

∫
g2(x)e−

1
2 x2

dx < ∞} and
(b0, a0) ∈ R× R+ with Tθ[f ](b0, a0) = 0.
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1) If ∂Tθ [f ]
∂b (b0, a0) 6= 0, then there exist neighborhoods U of b0 and V of a0 such

that there is a unique differentiable function h : V → U with h(a0) = b0

and Tθ[f ](h(a), a) = 0. The solutions (h(a), a) are the only zeros of Tθ[f ] in
U × V .

2) If there exists an n > 1, n = 2p or n = 2p + 1, such that ∂mTθ [f ]
∂bm (b0, a0) = 0

for all m < n and ∂nTθ[f ]
∂bn (b0, a0) 6= 0, then there are neighborhoods U of b0

and V of a0, real numbers tj < 0, ti 6= tj and nj ∈ N for j = 1, . . . p and p
convergent power series hj : U → V with

hj(b) = a0 + tj(b− b0)2 +
∞∑

i=1

ai,j(b− b0)
2+ i

nj ,

such that Tθ[f ](b, a)b = 0.
(a) Let n = 2p and let x1, . . . , xp denote the p positive roots of the Hermite

polynomial of order 2p. Then tj = − 1
2a0x2

j
and the elements of

p⋃
j=1

{(b, hj(b)) | b ∈ U}

are the only zeros of Tθ[f ] in U × V .
(b) Let n = 2p+1 and let y1, . . . , yp denote the p positive roots of the Hermite

polynomial of order 2p + 1. Then tj = − 1
2a0y2

j
and the elements of

{(b0, a) | a ∈ V } ∪
p⋃

j=1

{(b, hj(b)) | b ∈ U}

are the only zeros of Tθ[f ] in U × V .
3) If ∂nTθ [f ]

∂bn (b0, a0) = 0 for all n ∈ N, then f ≡ 0 almost everywhere.

In the following, we will present a complete proof of the above classification
theorem. In section 2, we begin with a summary of results on convolutions with
the Gaussian kernel and its relations to the Hermite polynomials. In section 3, we
collect all necessary facts on the theory of Puiseux series which provides us with a
tool to resolve singularities. Section 4 contains the proof of Theorem 1.1. Finally,
in section 5, we characterize piecewise C1-functions f : R → R, such that the zero
set of Tθ[f ] has a singularity of a given type.

2. Convolutions with the Gaussian kernel

The following equation for the partial derivatives of Tθ[f ] with respect to b follows
easily from interchanging differentiation and integration:

∂nTθ[f ]
∂bn

(b, a) =
(−1)n

an+1

∞∫
−∞

θ(n)(
x − b

a
)f(x)dx.(2)

Moreover, the derivatives of the Gaussian function satisfy the following recursion
formula:

θ(n)(x) = −
[
(n− 1)θ(n−2)(x) + xθ(n−1)(x)

]
.(3)

This relation yields expressions for the partial derivatives of Tθ[f ] with respect
to a.
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Lemma 2.1. For each n ∈ N, there are constants ci,n ∈ R for i = 1, . . . n, such
that

∂nTθ[f ]
∂an

(b, a) =
1

an+1

n∑
i=1

ci,n

∞∫
−∞

θ(2i)(
x− b

a
)f(x)dx.(4)

Moreover, cn,n = 1 for each n > 0.

Proof. Equation (4) is proved by induction over n, using the recursion formula
(3).

Corollary 2.2. Let (b0, a0) ∈ R× R+ and n ∈ N such that

∂mTθ[f ]
∂bm

(b0, a0) = 0 for all m < n and
∂nTθ[f ]

∂bn
(b0, a0) 6= 0.

Then

∂i+kTθ[f ]
∂aibk

(b0, a0) =


(a0)i ∂

nTθ[f ]
∂bn

(b0, a0) for all i, k ∈ N, where 2i + k = n,

0 for all i, k ∈ N, where 2i + k < n.

The proof is a consequence of Eq.(2) and Lemma 2.1.
The Gaussian function and its derivatives are closely related to Hermite polyno-

mials. These polynomials will play an important role in the following parts of this
paper. Therefore, we summarize a few of their properties. For further reading we
refer to [5] and [6].

We start with one possible definition. The Hermite-Polynomial Hn(x) of order
n is defined by

Hn(x) = (−1)ne
1
2 x2 · dn

dxn

(
e−

1
2 x2

)
.

Our definition differs slightly from the definition given in [5] and [6]. It will turn out
that our definition is more convenient for the further application to the Gaussian
function. Nevertheless, the main properties of Hermite polynomials remain true for
our definition.

Polynomial expansion:

Hn(x) = xn −
(

n

2

)
xn−2 + 1 · 3

(
n

4

)
xn−4 − 1 · 3 · 5

(
n

6

)
xn−6 + . . . .

Generating function:

etx− 1
2 t2 =

∞∑
n=0

Hn(x)
tn

n!
.(5)

Orthogonality property:
∞∫

−∞
Hn(x)Hm(x)e−

1
2 x2

dx = δn,mn!
√

2π.

If we define r(x) = e−
1
2 x2

, then the Hermite polynomials form a complete or-
thogonal system with respect to the scalar product 〈f, g〉r =

∫
f(x)g(x)r(x)dx for
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f, g ∈ L2
θ(R). In this notation, we have

∂nTθ[f ]
∂bn

(b, a) =
1
an
〈Hn, f(a ·+b)〉r.(6)

In the following, we are interested in the zeros of Tθ[f ]. In order to characterize
the possible shapes of the zero set, we consider the Taylor expansion of Tθ[f ] in a
point (b0, a0) with Tθ[f ](b0, a0) = 0:

Tθ[f ](b, a) =
∞∑

i,k=0

1
k!i!

(b− b0)k(a− a0)i ∂
k+iTθ[f ]
∂ai∂bk

(b0, a0).

In the next section, we will show how certain conditions on the coefficients of the
Taylor expansion allow us to resolve a critical point of the zero set.

3. Resolution of singularities with Puiseux series

Usually, there is no general method to classify the set of zeros of a two-dimensional
function w : R2 → R, w ∈ C∞(R2), in a neighborhood of a singular point, even if w
is represented by its infinite Taylor expansion. If we know more about the partial
derivatives of w in a singular point, it is sometimes possible to reduce the Taylor
expansion to a form which allows a resolution of the singularity. One of the well
known methods to resolve singularities is the Newton Process, see e.g. [4], which
we describe next.

Let w : R2 → R be in C∞(R2) given by the convergent power series

w(x, y) =
∑

βk,ix
kyi

with βk,i ∈ R and w(0, 0) = 0 near (0, 0). Under certain conditions on the coeffi-
cients βk,i, we can find parametrizations of all solutions of w(x, y) = 0. Here we
will briefly explain the main steps of this process.

Without loss of generality let m > 0, β0,m 6= 0 and βi,m = 0 ∀i < m. Further-
more, let k0 > 0, i0 > 0 with βk0,i0 6= 0. If there are positive rational numbers µ0

and ν with µ0m = ν such that

w(x, y) =
∑

k+µ0i≥ν

βk,ix
kyi,(7)

we can split w into a sum of a polynomial w̃ and a remainder h:

w̃(x, y) =
∑

k+µ0i=ν

βk,ix
kyi,

h(x, y) =
∑

k+µ0i>ν

βk,ix
kyi.

With the substitution y = txµ0 for t ∈ R we obtain

w̃(x, y) = w̃(x, txµ0 ) = xν
∑

k+µ0i=ν

βk,it
i = xνg(t),

where g is a polynomial in t of order m. If g has a real root t0 6= 0, y0 = t0x
µ0 is a

solution of w̃(x, y0) = 0 and a first approximation to the zeros of f . Since µ0 ∈ Q>0

there are p0, q0 ∈ N with µ0 = p0
q0

and (p0, q0) = 1. The substitution x1 = x
1

q0 and
y = xp0

1 (t0 + y1) leads to a new power series w1 in x1 and y1 with

w(x1, x
p0
1 (t0 + y1)) = xνq0

1 w1(x1, y1).
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The iterative substitution process yi = xµi

i (ti+yi+1) with µi = pi

qi
∈ Q (i = 0, 1, . . . )

gives the solution

y = t0x
µ0 + t1x

µ0+
µ1
q0 + t2x

µ0+
µ1
q0

+
µ2

q0q1 + . . . .

In [4] it is proved that there is an index i0, such that µ1 ∈ N for all i ≥ i0. Hence
y is presented as a power series in x

1
n where n = q0q1 . . . qi0 . The power series

y(x) =
∑

i=nµ0

αi

(
x

1
n

)i

is called Puiseux expansion for the curve with equation f(x, y) = 0. The conver-
gence of the Puiseux expansion follows from the Weierstrass preparation theorem
(see e.g. [4]). It is important to mention that we get the complete zero set of f if
we determine the Puiseux expansions for all real roots of the polynomial g.

4. Proof of Theorem 1.1

In this section we present the proof of the Main Theorem 1.1 stated in the
indroduction.

Ad 1) This is a consequence of the implicit function theorem.
Ad 3) By Equation (6), the condition ∂nTθ [f ]

∂bn (b0, a0) = 0 for all n ∈ N can be
rewritten as 〈Hn, f(a ·+b)〉r = 0 for all n ∈ N. Since {Hn} is complete, it follows
that f(a0x + b0) is orthogonal to all Hermite polynomials, which implies that f is
equal to zero except on a set of measure zero.

Ad 2) We will start with some necessary lemmata.

Lemma 4.1. Let k ∈ N, and let

Pk(x, y) =
1
k!

yk +
1

(k − 1)!2!
x2yk−1 + . . . +

1
(2k − 2)!

x2k−2y +
1

(2k)!
x2k

and

Qk(x, y) =
1
k!

xyk +
1

(k − 1)!3!
x3yk−1 + . . . +

1
(2k − 1)!

x2k−1y +
1

(2k + 1)!
x2k+1.

Then

y2kPk(1,− 1
2y2

) =
1

(2k)!
H2k(y)

and

y2k+1Qk(1,− 1
2y2

) =
1

(2k + 1)!
H2k+1(y).

Proof. Using Equation (5) we set

ft(y) := ety− 1
2 t2 =

∞∑
n=0

Hn(y)
tn

n!
.

Now we split ft into its odd and even part fe
t and fo

t , respectively, and get

f e
t (y) =

1
2

[ft(y) + ft(−y)] and fo
t (y) =

1
2

[ft(y)− ft(−y)] .
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Furthermore,

fe
t (y) =

1
2

[
ety + e−ty

]
e−

1
2 t2 =

∞∑
n=0

H2n(y)
t2n

(2n)!
and(8)

fo
t (y) =

1
2

[
ety − e−ty

]
e−

1
2 t2 =

∞∑
n=0

H2n+1(y)
t2n+1

(2n + 1)!
.

The product of the power series of coshx and ey is absolute convergent. Therefore,
we can arrange the summation in the following way:

(cosh x) ey

=
(

1 +
x2

2!
+

x4

4!
+

x6

6!
+ . . .

) (
1 + y +

y2

2!
+

y3

3!
+

y4

4!
+

y5

5!
+

y6

6!
+ . . .

)
= (y + 1) +

(
1
2!

y2 +
1
2!

x2y +
1
4!

x4

)
+(

1
3!

y3 +
1

2!2!
x2y2 +

1
4!

x4y +
1
6!

x6

)
+ . . .

=
∞∑

k=0

Pk(x, y)

For s ∈ R it follows:
∞∑

k=0

Pk(x, sx2) =
∞∑

k=0

x2kPk(1, s) = (coshx) esx2
=

1
2

[
ex + e−x

]
esx2

.(9)

By substituting s = − 1
2y2 and x = ty, the above equation together with Equation

(8) yields:
∞∑

k=0

(ty)2kPk(1,− 1
2y2

) =
∞∑

k=0

H2k(y)
t2k

(2k)!
.

Now we get the formula

y2kPk(1,− 1
2y2

) =
1

(2k)!
H2k(y)

which proves the assertion.
In order to prove the second equation in Lemma 4.1 we consider the product of

the power series of sinhx and ey and obtain

(sinh x) ey

=
(

x +
x3

3!
+

x5

5!
+

x7

7!
+ . . .

) (
1 + y +

y2

2!
+

y3

3!
+

y4

4!
+

y5

5!
+

y6

6!
+ . . .

)
=

∞∑
k=0

Qk(x, y)

By analogy with Equation (9) we obtain for s ∈ R:
∞∑

k=0

Qk(x, sx2) =
∞∑

k=0

x2k+1Qk(1, s) = (sinh x) esx2
=

1
2

[
ex − e−x

]
esx2

.
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The substitutions s = − 1
2y2 and x = ty lead to

∞∑
k=0

(ty)2k+1Qk(1,− 1
2y2

) =
∞∑

k=0

H2k+1(y)
t2k+1

(2k + 1)!

and thus

y2k+1Qk(1,− 1
2y2

) =
1

(2k + 1)!
H2k+1(y).

Using this lemma we can determine the roots of the following polynomials in one
variable: For c ∈ R+ let

g1,p(t) =
1
p!

(ct)p +
1

(p− 1)!2!
(ct)p−1 +

· · · 1
2!(2p− 4)!

(ct)2 +
1

(2p− 2)!
ct +

1
(2p)!

(10)

and

g2,p(t) =
1
p!

(ct)p +
1

(p− 1)!3!
(ct)p−1 +

. . .
1

2!(2p− 3)!
(ct)2 +

1
(2p− 1)!

ct +
1

(2p + 1)!
.(11)

The roots of g1,p and g2,p are related to roots of the Hermite polynomials of
order 2p and 2p + 1, because g1,p(x

c ) = Pp(1, x) and g2,p(x
c ) = Qp(1, x). The roots

of orthogonal polynomials are very well studied, and we can apply the following
theorem about numbers of roots of Hermite polynomials (see e.g. [5]).

Theorem 4.2. The Hermite polynomial of order n has exactly n distinct real roots.

Theorem 4.2 and Lemma 4.1 give the following corollary:

Corollary 4.3. The polynomials g1,p and g2,p from Equation (10) and (11), re-
spectively, have exactly p negative roots. More precisely, the roots of g1,p are given
by − 1

2cx2
i
, i = 1, . . . , p, where xi are the p positive roots of H2p. The roots of g2,p

are given by − 1
2cy2

i
, i = 1, . . . , p, where yi are the p positive roots of H2p+1.

In order to prove the main part 2 of Theorem 1.1 we first consider the more
general function Fl ∈ C∞(R2) for l ∈ N with

Fl(x, y) =
∑

{k,i | k+2i=l}

1
k!i!

cixkyi +
∑

{k,i | k+2i>l}
αi,kxkyi,(12)

where c ∈ R+ and αi,k ∈ R. The resolution of the singularity (0, 0) into its Puiseux
expansions is given by the following theorem:

Theorem 4.4. For p ∈ N, let x1, . . . , xp be the p distinct positive roots of the
Hermite polynomial of order 2p and y1, . . . , yp the p distinct positive roots of the
Hermite polynomial of order 2p + 1. Furthermore, let U be an open subset of R2

with 0 ∈ U . Then there exist open neighborhoods V, W ⊂ R of 0, V ×W ⊂ U , and
p convergent power series hj : V → W and nj ∈ N for j = 1, . . . , p with

hj(x) = tjx
2 +

∞∑
i=1

ai,jx
2+ i

nj
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and tj < 0 for all j = 1, . . . , p, ti 6= tj, such that Fl(x, hj(x)) = 0.
We distinguish two cases.

1. Let l = 2p and tj = − 1
2cx2

j
. Then {(x, hj(x)) |x ∈ V } is exactly the set of

solutions of Fl(x, y) = 0 in V ×W .
2. Let l = 2p + 1 and tj = − 1

2cy2
j
. There exist ρ ∈ Q, ρ > 0, and a convergent

power series F1(x, y), such that Fl(x, y) = xρF1(x, y) and {(x, hj(x)) |x ∈ V }
is exactly the set of solutions of F1(x, y) = 0 in V ×W .

Proof. In the following we will resolve the singular point (0, 0) of Fl by applying
the Newton Process. We consider the cases l odd and l even separately.

1. Let l = 2p for p ∈ N. For µ0 = 2 and ν = 2p, we can split the function
Fl into the sum of a polynomial F̃l and a remainder H̃l (cf. Equation (7)). The
approximation F̃l is given by

F̃l(x, y) =
1
p!

(cy)p +
1

(p− 1)!2!
x2(cy)p−1 + . . .

+
1

2!(2p− 4)!
x2p−4(cy)2 +

1
(2p− 2)!

x2p−2cy +
1

(2p)!
x2p

and after substituting y = tx2 we get F̃l(x, y) = x2pg(t) with

g(t) =
1
p!

(ct)p +
1

(p− 1)!2!
(ct)p−1 + · · ·

1
2!(2p− 4)!

(ct)2 +
1

(2p− 2)!
ct +

1
(2p)!

Since g is the polynomial g1,p from Equation (10), we know from Corollary 4.3 that
g has p negative roots t1, . . . , tp with tj = − 1

2cx2
i
, where xi are the positive roots

of H2p. Therefore, the zero set of Fl is parametrized by the Puiseux expansions

yj(x) =
∑

i=2nj

ai,j

(
x

1
nj

)i

with nj ∈ N and a2nj ,j = tj ; this means yj(x) = tjx
2 + O

(
x

2+ 1
nj

)
.

2. Let l = 2p+1 for p ∈ N. If we set µ0 = 2 and ν = 2p+1, then l
2 = 2p+1

2 6∈ N,
and therefore we cannot start the Newton process.

a) Assume that α0,i = 0 for all i ∈ N. Then

Fl(x, y) = xF ∗
l (x, y) with F ∗

l (x, y) =
∑

k+2i≥2p

γk+1,ix
kyi,

where γk,i = 1
k!i!αk,i, and the condition µ0

ν ∈ N is valid for µ0 = 2 and ν = 2p. The
first approximation F̃ ∗

l is presented as

F̃ ∗
l (x, y) =

1
p!

(cy)p +
1

(p− 1)!3!
x2(cy)p−1 + . . .

+
1

2!(2p− 3)!
x2p−4(cy)2 +

1
(2p− 1)!

x2p−2cy +
1

(2p + 1)!
x2p.
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The solutions of F ∗
l (x, y) = 0 are determined in the same way as in 1), except that

the tj are the roots of the polynomial

g(t) =
1
p!

(ct)p +
1

(p− 1)!3!
(ct)p−1 + . . .

1
2!(2p− 3)!

(ct)2 +
1

(2p− 1)!
ct +

1
(2p + 1)!

.

Since g is the polynomial g2,p from Equation (11), we know from Corollary 4.3 that
g has p negative roots t1, . . . , tp with tj = − 1

2cy2
i
, where xi are the positive roots

of H2p+1.
b) There exists m ∈ N, such that α0,m 6= 0 and α0,i = 0 for all i < m. For

γk,i = 1
k!i!αk,i we get

Fl(x, y) =
∑

k+µ0i≥ν

γk,ix
kyi with µ0 =

1
m− p

and ν =
m

m− p
.

The substitutions y = x
1

m−p y1 and x1 = x
1

m−p yield

Fl(x, y) = Fl(x, x
1

m−p y1) = Fl(x
m−p
1 , x1y1)

= γ1,px
m−p
1 xp

1y
p
1 + . . . + γ2p−1,1x

(2p−1)(m−p)
1 x1y1

+ γ2p+1,0x
(2p+1)(m−p)
1 + γ0,mxm

1 ym
1 + . . .

= xm
1

[
γ1,py

p
1 + γ3,p−1x

2(m−p)−1
1 yp−1

1 + γ5,p−2x
2[2(m−p)−1]
1 yp−2

1 + . . .

. . . + γ2p−1,1x
(p−1)[2(p−m)−1]
1 y1 + γ2p+1,0x

p[2(p−m)−1]
1 + γ0,mym

1 + . . .
]

= xm
1 F ∗

l (x1, y1).

The power series F ∗
l satisfies the assumptions of the Newton process (µ1 =

2(m− p)− 1, ν1 = p[2(m− p)− 1]), and for the first approximation F̃ ∗
l we get:

F̃ ∗
l (x1, y1) = γ1,p(cy1)p + γ3,p−1x

µ1
1 (cy1)p−1 + . . .

+ γ2p−1,1x
(p−1)µ1
1 cy1 + γ2p+1,0x

pµ1
1 .

If we substitute y1 = txµ1
1 , we obtain F̃ ∗

l (x1, y1) = xpµ1
1 g(t), where g is the polyno-

mial g2,p from Equation (11). Therefore, the zero set of F ∗
l is parametrized by the

Puiseux expansions

y1,j(x) =
∑

i=njµ1

ai,j

(
x

1
nj

1

)i

,

where nj ∈ N and a2nj ,j = tj . In terms of x and y the solutions of F ∗
l (x, y) = 0 are

given by

yj(x) =
∑

i=njµ1

ai,jx
nj+i

nj(m−p)

= tjx
2 + O

(
x

2+ 1
nj(m−p)

)
.
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We are now able to prove part 2 of the Main Theorem. Let (b0, a0) be a singular
zero of Tθ[f ] such that

∂mTθ[f ]
∂bm

(b0, a0) = 0 for all m < n and
∂nTθ[f ]

∂bn
(b0, a0) 6= 0.

Using the information about the partial derivatives of Tθ[f ] from Corollary 2.2 we
reduce the Taylor exansion of Tθ[f ] in (b0, a0) to

Tθ[f ](b, a) =
∞∑

k+2i=n

1
k!i!

(a0)i(b− b0)k(a− a0)i ∂
nTθ[f ]
∂bn

(b0, a0) +

∞∑
k+2i>n

1
k!i!

(b− b0)k(a− a0)i ∂
k+iTθ[f ]
∂ai∂bk

(b0, a0).

The Taylor expansion has exactly the form Fl for l = n. Therefore, part 2 of
Theorem 1.1 follows from Theorem 4.4.

5. Further relations to Hermite polynomials

First, we give an example of a class of functions f : R → R, such that the zero
set of Tθ[f ] has a singularity of type (a) of (b) in Theorem 1.1.

Example 5.1. Let (b0, a0) ∈ R× R+, n ∈ N and

f(a0x + b0) =
∞∑

i=n

ciHi(x),

a convergent Hermite series with ci ∈ R, cn 6= 0. From Equation (6) we get

∂mTθ[f ]
∂bm

(b0, a0) =
1

am
0

∫ [
cnHn(x) +

∞∑
i=n+1

ciHi(x)

]
Hm(x)e−

1
2 x2

dx = 0

for all m < n and

∂nTθ[f ]
∂bn

(b0, a0) =
1
an
0

∫ [
cnHn(x) +

∞∑
i=n+1

ciHi(x)

]
Hn(x)e−

1
2 x2

dx =
1
an
0

cnn!
√

2π.

Thus, for each n ∈ N there exist functions f ∈ L2
θ(R) with the desired type of

singularity.

Conversely, we can ask whether a given bifurcation point of type (a) or (b) in
Theorem 1.1 determines the underlying function f . To answer this question we use
the following theorem (see e.g. [8]):

Theorem 5.2. Let f ∈ L2
θ(R) be continuous with a piecewise continuous deriv-

ative f ′ ∈ L2
θ(R). Then f(x) =

∑∞
n=0 cnHn(x) for all x ∈ R, where cn =

1
n!
√

2π

∫∞
−∞ f(x)Hn(x)e−

1
2 x2

dx. Moreover, the sequence fn(x) =
∑n

k=0 ckHk(x)
converges uniformly to f on each interval [x1, x2] ⊂ R.

From this theorem we derive the following lemma:

Lemma 5.3. Let f ∈ L2
θ(R) be continuous and f ′ ∈ L2

θ(R) be piecewise continuous.
Then ∂mTθ [f ]

∂mb (b, a) = 0 for m < n, ∂nTθ [f ]
∂nb (b, a) 6= 0 iff f(ax + b) =

∑∞
i=n ca,b

i Hi(x),
where ca,b

i ∈ R, ca,b
n 6= 0.
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