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A VARIANT OF THE DIAMOND PRINCIPLE
FOR COMBINATORIAL IDEALS

Y. ABE

(Communicated by Andreas R. Blass)

Abstract. We use a variant of the diamond principle to show many ideals on
κ are not 2κ-saturated if κ is large. For instance, the Π1

1-indescribable ideal is
not 2κ-saturated if κ is almost ineffable.

Kunen proved that the diamond principle for κ, ♦(κ) holds if κ is subtle. A
consequence of ♦(κ) is that the nonstationary ideal on κ is not 2κ-saturated.

Meanwhile Baumgartner, Taylor and Wagon [2] proved that the ethereal ideal
on κ is not κ+-saturated if κ is almost ineffable.

These two facts have a point in common. If κ has a strong property, then an
ideal corresponding to a weaker property is less saturated.

For a regular uncountable cardinal κ, ♦(κ) can be regarded as a property of the
nonstationary ideal. We consider the following principle for an ideal I on κ:

The Diamond Principle for I, ♦(I). There is a sequence 〈Sα ⊂ α | α < κ〉
such that for every X ⊂ κ,

{α < κ | X ∩ α = Sα} /∈ I.

We modify Kunen’s construction of a diamond sequence assuming κ has a suf-
ficiently strong property so that ♦(I) holds. It is clear that no ideal J ⊆ I is
2κ-saturated if ♦(I) holds. Specifically we prove the following.

Theorem. (1) If κ is almost ineffable, then any ideal extended by the Π1
1-indescrib-

able ideal on κ is not 2κ-saturated.
(2) If κ is completely ineffable, then any ideal extended by the ineffable ideal on

κ is not 2κ-saturated.

Before proving the theorem we state the definition of these ideals. Throughout
the rest of this paper, κ is a regular uncountable cardinal and I is a κ-complete
ideal on κ. The filter dual to an ideal I is denoted by I∗, and I+ is the set
{X ⊂ κ | X /∈ I}.
Definition. Let X ⊂ κ.

(i) X is Π1
1-indescribable if for any R ⊂ Vκ and Π1

1 sentence ϕ such that
〈Vκ,∈, R〉 |= ϕ, there is α ∈ X such that 〈Vα,∈, R ∩ Vα〉 |= ϕ.

(ii) X is almost ineffable if for any sequence 〈Sα ⊂ α | α < κ〉 there is S ⊂ κ
such that {α ∈ X | Sα = S ∩ α} is unbounded in κ.
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(iii) X is ineffable if for any sequence 〈Sα ⊂ α | α < κ〉 there is S ⊂ κ such that
{α ∈ X | Sα = S ∩ α} is stationary in κ.

(iv) The completely ineffable ideal on κ is the minimal normal ideal I such that
for any X ∈ I+ and any sequence 〈Sα ⊂ α | α < κ〉 there is S ⊂ κ such that
{α ∈ X | Sα = S ∩ α} ∈ I+. X ∈ I+ is called completely ineffable.

(v) X is subtle if for any sequence 〈Sα ⊂ α | α < κ〉 and C closed unbounded
in κ, there exist α < β both in C ∩X such that Sα = Sβ ∩ α.

For each property A stated above, we consider the set

{X ⊂ κ | X does not have property A},
which is a normal ideal on κ. For instance the Π1

1-indescribable ideal is the set

{X ⊂ κ | X is not Π1
1-indescribable}.

These ideals were studied in Baumgartner [1] and Johnson [4].

Proof of the Theorem. (1) Suppose that κ is almost ineffable. Let NAInκ denote
the almost ineffable ideal on κ and Pα the Π1

1-indescribable ideal on α for α ≤ κ.
We use the fact that Pκ ⊂ NAInκ and for every X ∈ P ∗

κ ,

{α ∈ X | X ∩ α ∈ P ∗
α} ∈ NAIn∗

κ.

We recursively define (Sα, Cα) for α < κ such that Sα ⊂ α and Cα ∈ P ∗
α as follows.

Suppose that α < κ and (Sβ , Cβ) has been defined for β < α. Set (Sα, Cα) =
(∅, α) except in the case that

(♥): There exist S ⊂ α and C ∈ P ∗
α such that S ∩ β 6= Sβ for any β ∈ C.

In this case, let (Sα, Cα) be one such pair (S, C).
We show that 〈Sα | α < κ〉 is a diamond sequence for Pκ. Suppose to the

contrary that there are X ⊂ κ and C ∈ P ∗
κ such that X ∩ α 6= Sα for α ∈ C. Let

D = {α ∈ C | C ∩ α ∈ P ∗
α}. For α ∈ D, (S ∩ α, C ∩ α) satisfies the condition of

(♥). Hence Cα ∈ P ∗
α and Sα ∩ β 6= Sβ for β ∈ Cα. Since D ∈ NAIn∗

κ, D is subtle.
By Theorem 4.1 in Baumgartner [1],

{α ∈ D | {β ∈ D ∩ α | Sβ 6= Sα ∩ β} ∈ Pα} is not subtle.

Thus we have

E = {α ∈ D | {β ∈ D ∩ α | Sβ = Sα ∩ β} ∈ P+
α } ∈ NAIn∗

κ.

For any α ∈ E, Cα ∈ P ∗
α. Hence we can find β ∈ Cα such that Sβ = Sα ∩ β

contradicting the definition of (Sα, Cα).
(2) Suppose that κ is completely ineffable. Let NCInκ denote the completely

ineffable ideal on κ and NInα the ineffable ideal on α for α ≤ κ. We need only
replace P ∗

α by NIn∗
α in the definition of (Sα, Cα) to get a diamond sequence for

NIn∗
κ.

Consider the notion of forcing Q = (NCIn+
κ ,⊆) and let G be a V generic filter

on Q and M = UltG(V ) the generic ultrapower. Since NCInκ is normal (κ, κ)
distributive, V V

κ+1 = V M
κ+1. (See [3], [4].) Hence, NInV

κ = NInM
κ and, for any

X ∈ NIn∗
κ,

{α ∈ X | X ∩ α ∈ NIn∗
α} ∈ NCIn∗

κ.
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If 〈Sα | α < κ〉 is not a diamond sequence for NInκ, there is Y ∈ NIn∗
κ ⊂ NCIn∗

κ

such that, for any α ∈ Y ,

Cα ∈ NIn∗
α and Sβ 6= Sα ∩ β for β ∈ Cα.

By complete ineffability, there exist T, U ⊂ κ such that

H = {β ∈ Y | Sα = T ∩ α and Cα = U ∩ α} ∈ NCIn+
κ .

Since H  U ∈ NIn∗
κ, U ∩ H ∈ NIn+

κ . For any β < α both in U ∩ H , β ∈
U ∩ α = Cα and Sβ = T ∩ β = (T ∩ α) ∩ β = Sα ∩ β, which contradicts the fact
that α ∈ Y .

There are several facts which can be proved by the same argument. For instance:
If κ is ineffable, then the Π1

2-indescribable ideal on κ is not 2κ-saturated.
If κ is 2-subtle, then the ineffable ideal on κ is not 2κ-saturated.
If κ is measurable, then the completely ineffable ideal on κ is not 2κ-saturated.

Such an argument can be carried out for ideals on Pκλ as well.
Johnson proved in [4] that the completely ineffable ideal is not precipitous if κ

is completely ineffable. Thus it seems natural to ask:

Question. (1) Can it be proved that these combinatorial ideals mentioned above
are not precipitous?

(2) Is it possible to prove the ideal corresponding to property A is not 2κ-saturated
just assuming κ has property A? For instance, in order to prove the ineffable ideal
on κ is not 2κ-saturated, does it suffice to assume κ is ineffable?

References

[1] J. Baumgartner, Ineffability properties of cardinals 1, Infinite and finite sets (P. Erdös 60th
Birthday Colloquium, Keszthely, Hungary, 1973), Colloquia Mathematica Societatis János
Bolyai, vol. 10, North-Holland, Amsterdam (1975), 109-130. MR 52:5427

[2] J. Baumgartner, A. Taylor and S. Wagon, On splitting stationary subsets of large cardinals,
J. Symbolic Logic 42 (1977), 203-214. MR 58:21619

[3] C. A. Johnson, Distributive ideals and partition relations, J. Symbolic Logic 51 (1986), 617-
625. MR 87j:03076

[4] C. A. Johnson, More on distributive ideals, Fund. Math. 128 (1987), 113-130. MR 89a:03095

Department of Mathematics, Kanagawa University, Yokohama 221, Japan
E-mail address: yabe@cc.kanagawa-u.ac.jp


