
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 127, Number 3, March 1999, Pages 647–655
S 0002-9939(99)04531-1

DERIVED TUBULAR STRONGLY
SIMPLY CONNECTED ALGEBRAS

M. BAROT AND J. A. DE LA PEÑA
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Abstract. Let A be a finite dimensional algebra over an algebraically closed
field k. Assume A = kQ/I for a connected quiver Q and an admissible ideal I
of kQ. We study algebras A which are derived equivalent to tubular algebras.
If A is strongly simply connected and Q has more than six vertices, then A
is derived tubular if and only if (i) the homological quadratic form χA is a

non-negative of corank two and (ii) no vector of χ−1
A (1) is orthogonal (with

respect tho the homological bilinear form) to the radical of χA.

Finite dimensional algebras over an algebraically closed field k are divided into
two classes. On one hand, we have the tame algebras for which almost all indecom-
posable modules of each fixed dimension occur in a finite number of one-parametric
families; on the other hand, the wild algebras for which the classification of indecom-
posable modules contains the classification of pairs of matrices under simultaneous
conjugations. Among tame algebras, tubular algebras form a well-understood and
important class [15]. The aim of this work is to study algebras which are derived
equivalent to tubular algebras. We shall apply our results to obtain a new charac-
terization of polynomial growth algebras.

Two k-algebras A1 and A2 are said to be derived equivalent if their derived
categories Db(A1-mod) and Db(A2-mod) are equivalent as triangulated categories;
see [10]. If A1 and A2 are derived equivalent and A1 is tubular, we say that A2

is a derived tubular algebra. In [4], a characterization of derived tubular algebras
of finite representation type was given; the characterization uses properties of the
homological form and the Tits form of the algebra. In this work we extend those
results to certain classes of tame algebras.

If the algebra A is of finite global dimension, then the homological bilinear
form of A is defined by 〈dim M, dim N〉A =

∑∞
i=0(−1)idimkExti

A(M, N), where
dim M denotes the class of an A-module M in the Grothendieck group K◦(A) of
A. The corresponding quadratic form is denoted by χA, whereas the Tits form
qA is the “truncated version”, defined for a semisimple module S as qA(dimS) =∑2

i=0(−1)idimkExti(S, S). The radical rad qA is the subgroup of K◦(A) of all vec-
tors v such that qA(v+?) = qA(v) + qA(?). The corank of qA is the rank of rad qA.

Let Q be a connected quiver and I an admissible ideal of kQ such that A = kQ/I
is a finite dimensional k-algebra. We recall from [17] that A is said to be strongly
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simply connected if Q has no oriented cycle and for every convex subcategory B of
A, the first Hochschild cohomology group H1(B, B) vanishes. The main results of
this work are the following.

Theorem A. Let Q be a connected quiver with more than six vertices and I an
admissible ideal of kQ such that A = kQ/I is strongly simply connected. Then A
is derived tubular if and only if A satisfies the following two conditions.

(i) The homological quadratic form χA is non-negative and has corank two,
(ii) No vector of χ−1

A (1) is orthogonal (with respect to the homological bilinear
form) to the whole radical of χA.

Theorem B. Let Q be a connected quiver with more than six vertices and I an
admissible ideal of kQ such that A = kQ/I is strongly simply connected. Then A
is tubular if and only if A satisfies the following three conditions.

(i) The Tits form qA is non-negative and has corank two,
(ii) No vector of q−1

A (1) is orthogonal (with respect to the homological bilinear
form) to the whole radical of qA.

(iii) There exists a positive sincere radical vector of qA.

In section 2 we shall provide a complete list of derived tubular algebras whose
underlying quivers have six vertices. This is relevant since for this number of vertices
the above characterizations fail.

For a tame algebra A, and d ∈ N denote by µA(d) the minimal number of one-
parametric families of indecomposable d-dimensional A-modules. We say that A is
of polynomial growth if µA(d) ≤ dm for some m ∈ N and all d ∈ N. In [13], strongly
simply connected polynomial growth algebras are characterized by properties of qA.
From those results and Theorem B we obtain the following characterization.

Theorem C. Let A be a strongly simply connected algebra. Then A is of polyno-
mial growth if and only if qA is weakly non-negative and any full convex subcategory
B of A with non-negative Tits form qB of corank two and a sincere, positive radical
vector of qB satisfies the following condition: either B is isomorphic to Aρ, Bρ

or Bop
ρ in list 2.4, or B has more than six points and then no vector in q−1

B (1) is
orthogonal (with respect to the homological bilinear form) to the whole radical of
qB.

Proofs of the results are given in section 4 after some required preparation in
section 3. For a general discussion on quadratic forms and representation theory
see for example [14].

1. Fundamental concepts

Throughout the article, k denotes a fixed, algebraically closed field. A spec-
troid is a k-category with finite dimensional morphism spaces and pairwise non-
isomorphic objects (called points) whose endomorphism algebras are local. Ba-
sic algebras over k stand in a one-to-one correspondence with finite spectroids,
A ←→ SA [9]. The category A-mod of finite-dimensional left-modules over A, is
equivalent to the category SA-mod of covariant finitely generated functors (also
called left SA-modules) SA → k-mod. Since only left S-modules will be considered,
the specification “left” will be suppressed. The category of finite dimensional S-
modules is denoted by S-mod. For each class of indecomposable S-modules choose
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a representative. Then the full subcategory of S-mod given by those representatives
is a spectroid which will be denoted by S-ind.

A spectroid S is finite if it has only finitely many points, it is directed if there
does not exist a cycle of non-zero morphisms in S, and it is connected if the points
of S cannot be divided into two non-empty sets with only zero morphisms between
them.

If a spectroid S is directed the associated quiver of S induces a partial order on
the objects of S. The maximal points correspond to the sinks whereas the minimal
points correspond to the sources.

1.1. Let S be a finite and directed spectroid. Then its repetitive spectroid
Ŝ is a spectroid having as object-set S × Z (instead of ObS we just write S, the
points are denoted by s[i], s ∈ S, i ∈ Z) and non-zero morphism-spaces Ŝ(r[i], s[i]) =
S(r, s)× {i} and Ŝ(r[i], s[i−1]) = DS(s, r) × {i}.

The bijection ?[j] from the points of Ŝ to itself, (s[i])[j] := s[i+j] extends for any
j ∈ Z in a natural way to an automorphism of Ŝ, which again will be called ?[j].

1.2. The source-extension S (denoted by S◦[M ]) of a spectroid S◦ by a S◦-
module M is a spectroid having as points those of S◦, an additional point αM

and morphism-spaces given by S|S◦ = S◦, S(αM , ?)|S◦ = M (as left S◦-modules),
S(?, αM ) = 0 and S(αM , αM ) = k. The sink-extension (denoted by [M ]S◦)
of S by M is defined dually. If S is a finite spectroid, ω a maximal point of S
and if Iα denotes the injective indecomposable S-module corresponding to ω, then
the spectroid ρ+

ωS which is obtained from S by deleting ω (i.e. taking the full
subspectroid of S given by all points β 6= ω) and then building the source-extension
in Iω/socIω is called the source-reflection of S in ω.

Dually for a minimal point α in S we define the sink-reflection of S in α and
denote it by ρ−αS.

The unique point in ρ+
ωS \ S◦ will be denoted by ω[1], in the first case, and the

unique point in ρ−αS\S ′◦ by α[−1]. Two spectriods are called reflection-equivalent
if one is obtained from the other by a sequence of source- and sink-reflections.

1.3. It is sometimes useful to mark a point p of a spectroid S and to consider
pointed spectroids. Let A := −→An denote the linearily ordered spectroid with n
points, P the unique projective-injective indecomposable and T a tilting A-module.
If we vary n and T we obtain simple but important examples of pointed finite
spectroids (End(T ), P ), where T = End(T ) is the spectroid whose points Ti, i =
1, ..., n are chosen representatives of the isomorphism classes of the indecomposable
direct summands of T and whose morphism spaces are T (Ti, Tj) = Hom(Ti, Tj).
These pointed spectroids are called branches. For a more descriptive definition
see for example [15].

Now let Ṙ = (R, r) and Ṡ = (S, s) be two pointed spectroids. The glueing of
R with S is a spectroid, defined as the fibre-product of ιr : {�} −→ R,� 7→ r and
ιs : {�} −→ S,� 7→ s.

For a spectroid S and an indecomposable S-module M , the branch-source-
extension S[M, Ḃ] of S by a branch Ḃ in M is the glueing of (S[M ], αM ) with Ḃ,
and dually the branch-sink-extension [Ḃ, M ]S is the glueing of ([M ]S, ωM ) with
Ḃ.
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Let S be a finite spectroid, s an extremal point of S and R a full and convex
subspectroid of S. We then say that the reflection of S in s avoids R if s does
not belong to R. In particular R is preserved as a full and convex subspectroid
under the reflection. A sequence of reflections avoids R if each reflection of the
sequence avoids R. Any finite spectroid which can be obtained from a branch-
source-extension of a spectroid S◦ by a sequence of reflections avoiding S◦ is called
a branch-enlargement of S◦.

1.4. Let C be a critical spectroid (for a definition we refer to [15]). If (Tλ)λ∈P1k

is the tubular family in C-ind, then the function tC : P1k −→ N, λ 7→ rk(Tλ) is
called the tubular-type-function, where rk(T ) denote the rank of Tλ, that is,
the number of modules in the mouth of Tλ. Since almost everywhere tC takes the
value one, usually one writes only the tubular type (tC(λ1), . . . , tC(λp)) of C, where
Tλ1 , . . . , Tλp are the non-homogeneous tubes in C-ind [15].

A 1-regular branch-source-extension of C is a branch-source-extension of C by
a regular, indecomposable module of colength 1. The colength of a module in
an arbitrary tube is the position in the coray through M . The tubular-type-
function of C[M, Ḃ] is defined by tC[M,Ḃ](µ) = tC(µ) + |B|, if M belongs to Tµ, and
tC[M,Ḃ](λ) = tC(λ) for all λ 6= µ. Let M1, . . . , Mn be pairwise distinct, indecompos-
able, regular C-modules, all of colength one and Ḃ1, . . . , Ḃn branches. The spectroid
C[M1, Ḃ1] · · · [Mm, Ḃm] will still be called a 1-regular branch-source-extension of C
and its tubular type function is defined iteratively.

The 1-regular branch-source-extensions of a critical spectroid C have been exten-
sively studied [3, 12, 15]. The distinction of tame and wild ones can be easily formu-
lated by means of the tubular type; namely, the spectroid S=C[M1, Ḃ1] · · · [Mm, Ḃm]
is tame if and only if the star Γ(t1,... tp) associated to the tubular type (t1, . . . , tp) of
S is Dynkin or extended Dynkin [12, 15]. In the first case S is called domes-
tic tubular, whereas in the latter tubular. The expressions “derived equivalent
to a tubular (resp. domestic tubular) spectroid of tubular type (t1, . . . , tp)” will
be shortened to derived tubular (resp. derived domestic tubular) of type
(t1, . . . , tp).

1.5. From [5], we recall that a spectroid S satisfies the separation condition
if for each point s of S, two different direct summands of radPs lie in different
connected components of the spectroid S \ s/, where s/ is the full subspectroid of
S given by the start points of all paths ending at s.

By [17], a spectroid S is strongly simply connected if and only if each full and
convex subspectroid of S satisfies the separation condition. If, in addition, S is of
finite representation type, then by [8], S is strongly simply connected if and only if
S itself satisfies the separation condition.

2. Spectroids with six points

2.1. A finite spectroid S is called 2-tubular if it is isomorphic to a source-
extension D[M ], where D is a domestic tubular spectroid of tubular type (2, 2, s),
for some s ≥ 2, and M is an indecomposable regular D-module of colength two
lying in a tube Tλ with tD(λ) = s. Important examples of 2-tubular spectroids are
the strongly simply connected pg-critical spectroids as defined in [18].
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It is known that tubular and 2-tubular spectroids have “similar” quadratic forms.
However, if the considered spectroids have more than six points (the smallest tubu-
lar and 2-tubular spectroids have six points), then there is a distinction of their
quadratic forms.

We recall from the introduction that χS denotes the associated quadratic form
to the homological bilinear form 〈?,−〉S . Furthermore we define for any subset
U ⊂ K◦(S) its right orthogonal group U⊥ = {v ∈ K◦(S) | ∀u ∈ U, 〈u, v〉S = 0}.

2.2. Distinction Lemma ([4]). Let S be a finite spectroid with more than six
points.

(a) If S is derived tubular, then χS−1(1) ∩ (radχS)⊥ = ∅,
(b) if S is derived 2-tubular, then χS−1(1) ∩ (radχS)⊥ 6= ∅.

Proof. The proof is roughly sketched, for more details we refer to [4].
For (a) we assume that there exists a vector v in S−1(1) ∩ (radS)⊥. Let w

be a sincere positive, radical vector with 〈h◦, w〉S = −〈h∞, w〉S , where h◦ and h∞
denote the positive radical vectors corresponding to the two critical, full and convex
subspectroids of S. For a sufficiently large natural number N , the vector v′ = v +
Nw is then sincere, positive and satisfies χS(v′) = 1 and 〈h◦, v′〉S = −〈h∞, v′〉S =
N〈h◦, w〉S . The latter implies that χS(v′) = 0, a fact, which contradicts the above
statement.

In order to prove (b), we set S = D[M ] as in the definition above. Let N be the
indecomposable, regular D-module of colength one, which lies on the same coray
as M . We now show first that ΦSdim N + dim N = dim Pα − dim Sα where ΦS
denotes the Coxeter transformation of S and α = αM . From this it follows that
u := Φ2

Sdim N + dim Sα belongs to (radχS)⊥. Finally we verify that χS(u) = 1
also holds.

2.3. The condition on the number of points in 2.2 is necessary as shown by the
following considerations.

Let D[M ] be a 2-tubular spectroid with six points. The tubular type of D is
then (2, 2, 2) and therefore the tube to which the module M belongs is stable and
of rank two. Since M has colength two, it follows that the dimension vector of M
is the same as for any indecomposable, regular module M ′, of colength one lying
in a homogeneous tube.

Hence the Cartan matrices of the spectroidsD[M ] andD[M ′] are the same and so
are the homological bilinear forms. Since both spectroids have global dimension two,
the homological quadratic forms such as the Tits forms are all indistinguishable.

2.4. Fortunately, in the situation considered in 2.3 it is easy to determine all
spectroids explicitly. First in Figure 1, part I, we obtain the list of all tubular
spectroids with six points, where every picture represents a family of spectroids
(the index ρ runs over a cofinite subset of the field k and hits each isoclass of
algebras only finitely many times). This list was also calculated in [16].

Using that a derived tubular spectroid is always reflection-equivalent to a tubular
spectroid [1], we obtain furthermore the spectroids shown in Figure 1, part II.

Figure 1, part I and part II, exhibits all derived tubular spectroids with six
points. Only the first three families, namely (Aρ), (Bρ) and (Bop

ρ ) are strongly
simply connected.
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Figure 1, part I
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3. Tools

3.1. For the proof of the theorems we proceed by reduction deleting special ex-
tremal points. In this section we discuss this method.

Proposition. Let S be a finite and directed spectroid with a non-negative (respec-
tively positive) homological quadratic form, then any full subspectroid S◦ of S has
again a non-negative (respectively positive) homological quadratic form.

Proof. The proof is done by induction on the number of points of S which do not
belong to S◦.

Let s be a point of S and set S◦ = S \ {s}. Then define s/ as in 1.5. Let s1 be
minimal in s/, s2 be minimal in s/ \ {s1}, s3 be minimal in s/ \ {s1, s2}, and so on,
until we end up with s/ \ {s1, . . . , sq} = {s}. Then set R = ρ−sq

· · · ρ−s1
S.

Observe that reflections provide isomorphisms between the Grothendieck groups
preserving the homological bilinear form. Therefore χR is non-negative (respec-
tively positive) again. The point s is minimal in R, thus R◦ = R \ {s} is convex
in R. Hence χR◦ is non-negative (respectively positive) again. Now the asser-
tion follows again by the observation above observing that S◦ is isomorphic to
ρ+

s1[−1] · · · ρ+
sq [−1]R◦.

Observe that χS◦ is not always the restriction of χS .

3.2. Lemma. Let S be a directed spectroid, which satisfies the following two con-
ditions.

(i) The homological quadratic form χS is non-negative and has corank two and
(ii) χS−1(1) ∩ (radχS)⊥ = ∅.

Furthermore, let s be a point of S. Then the homological quadratic form χS◦ is
non-negative of corank one, where S◦ denotes the spectroid S \ {s}.
Proof. As in the lemma above we can restrict, without loss of generality, to the
case where s is maximal. The quadratic form χS◦ is then just the restriction of
χS to S◦. Since the corank of χS is two, it is easy to find a radical vector v such
that v(s) = 0. This shows that the corank of χS◦ is at least one. If there are two
linearily independent radical vectors w1 and w2 of χS◦ , then this would imply, that
the dimension vector of the indecomposable projective S-module corresponding to
s belongs to radχS⊥, and hence also to χS−1(1) ∩ (radχS)⊥, in contradiction to
the condition (ii).

3.3. The basic piece in our tool box is the following.

Proposition ([4]). If D is a derived domestic tubular spectroid and M an indecom-
posable D-module, such that χD[M ] is non-negative, then there exists a hereditary
critical spectroid H, an indecomposable regular H-module N and an equivalence
between Db(D-mod) and Db(H-mod) as triangulated categories which extend to an
equivalence between Db(D[M ]-mod) and Db(H[N ]-mod) as triangulated categories.

Proof. For more details we refer to [4]. First, show that the module M considered
as D̂-module, lies in one of the tubular families of D̂-ind. Then one verifies that
the support of M in D̂ is a branch-enlargement E of a special shape of a critical
spectroid. Finally we prove, that E [M ] can be transformed by a sequence of tiltings
and cotiltings into a source-extension of a critical, hereditary spectroid H by an
indecomposable, regular module N .
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3.4. Proposition. Let S be a finite, connected and strongly simply connected spec-
troid. Then S is derived domestic tubular if and only if χS is non-negative and has
corank one.

Proof. Let S be a finite, connected and strongly simply connected spectroid with
a non-negative homological quadratic form of corank one. If S is of finite repre-
sentation type, then the result follows from [3]. In the remaining case we show
that, according to [7], there exists a full and convex subspectroid R of S, which is
critical. If R = S we are done. Otherwise we may find an extremal point s in S
such that S◦ = S \{s} is still connected and contains R. By induction S◦ is derived
domestic tubular. If s is minimal, then radPs is indecomposable and therefore by
Proposition 3.3, the result follows. If on the other hand s is maximal, then we
apply the same argument to ρ−s S, where we show that the opposite of a strongly
simply connected spectroid is strongly simply connected again [17].

4. Proof of the results

4.1. Proof of Theorem A. The necessity of the conditions (i) and (ii) follows from
2.2 and [15].

For the sufficiency we choose an extremal point s of S such that S◦ := S \ {s} is
connected. By 3.1 the homological quadratic form of S◦ is non-negative and by 3.2 it
has corank one. Since S◦ is full and convex in S, the spectroid S◦ is strongly simply
connected again, and therefore 3.4 implies, that S◦ is derived domestic tubular. If
the point s is maximal in S we work with the opposite spectroid Sop.

So suppose, that the point s is minimal in S. The module radPs is indecompos-
able and hence 3.3 may be applied, in order to obtain, that S is derived equivalent
to a source-extension of a hereditary spectroid H by an indecomposable regular
H-module N . By [12] the non-negativity of the quadratic form of H[N ] implies
that H[N ] is either domestic tubular, tubular or 2-tubular. The first is excluded
by the corank of the quadratic form and the latter by condition (ii) and 2.2.

4.2. Corollory. Let S be a strongly simply connected spectroid with more than six
points. Then S is tubular if and only if S satisfies the following three conditions.

(i) The homological quadratic form χS is non-negative and has corank two.
(ii) χS−1(1) ∩ (radχS)⊥ = ∅.
(iii) There exists a positive sincere radical vector of the Tits form qS .

Proof. Once again only the sufficiency requires an argument.
First, by Theorem A, S is derived tubular. Now since S is strongly simply

connected, it has a postprojective component and therefore condition (iii) implies,
that S is of infinite representation type [6]. Thus by [2], S is a branch-enlargement
of a critical spectroid of extended Dynkin tubular type. If S is not tubular, there
is exactly one critical convex subspectroid R of S. But condition (iii) implies that
rad qA is spanned by two critical (i.e. minimal) positive radical vectors v1 and v2.
By [13], each of these vectors vi give rise to a critical convex subspectroid of S, a
contradiction showing the result.

4.3. It is not satisfactory to use two different quadratic forms in the formulation
of the characterization in 4.2 (which, a posteriori, are in fact the same, since the
global dimension is two). In fact, the homological quadratic form can be completely
exchanged by the Tits form, but the orthogonality in condition (ii) remains with
respect to the homological bilinear form, as shown in Theorem B.
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Proof of Theorem B. Again only the sufficiency has to be shown.
First observe that by condition (ii) and 2.2 S does not contain a full and convex

2-tubular subspectroid. Moreover since qS is weakly non-negative, [18] implies that
S is tame of polynomial growth. By (iii) and [13] we get that S is a critical or a
tubular spectroid and hence by (i) the result.

4.4. Proof of Theorem C. By 2.3 and 4.3, we have to show that S is of polynomial
growth if and only if qS is weakly non-negative and any full convex subspectroid
R of S satisfying conditions (i) and (iii) of Theorem B, is a tubular spectroid. The
result follows directly from [13].
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16. A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199.
MR 90k:16024
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