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Abstract. For all g ≥ 2 there is a Riemann surface of genus g whose automor-
phism group has order 8g+8, establishing a lower bound for the possible orders
of automorphism groups of Riemann surfaces. Accola and Maclachlan estab-
lished the existence of such surfaces; we shall call them Accola-Maclachlan sur-
faces. Later Kulkarni proved that for sufficiently large g the Accola-Maclachlan
surface was unique for g = 0, 1, 2 mod 4 and produced exactly one additional
surface (the Kulkarni surface) for g = 3 mod 4. In this paper we determine
the symmetries of these special surfaces, computing the number of ovals and
the separability of the symmetries. The results are then applied to classify the
real forms of these complex algebraic curves. Explicit equations of these real
forms of Accola-Maclachlan surfaces are given in all but one case.

1. Introduction

In the 1960’s Accola [1] and Maclachlan [12] proved independently that for every
g ≥ 2 there is a Riemann surface Xg (Accola-Maclachlan surface) of genus g whose
automorphism group has order 8g + 8, by explicitly giving the equation of the
surface, w2 = z2g+2 − 1, and calculating its automorphism group. This result is
interesting in that it is the largest order of an automorphism group that can be
uniformly constructed for every g. This extended a result of Wiman in the last
century in which he explicity constructed a surface (Wiman surface) of genus g,
w2 = z2g+1 − 1 with an automorphism of maximal order 4g + 2. Much later,
Kulkarni [8] considered the question of uniqueness of the surfaces, i.e., whether
they were the only surfaces of genus g with an automorphism group of order 8g+8.
Kulkarni demonstrated uniqueness for g = 0, 1, 2 mod 4 and g sufficiently large.
For g = 3 mod 4 and sufficiently large g he also proved, that in addition to the
Accola-Maclachlan surface, there is exactly one other surface of genus g whose
automorphism group has order 8g + 8, though he did not give explicit equations
for the surfaces. We shall call this surface the Kulkarni surface denoted by Yg.
He also showed that the conformal automorphism group of Xg has the following
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presentation 〈a, b | a2(g+1), b4, (ab)2, ab2a−1b2〉 and the one of Yg has the following
presentation 〈a, b | a2(g+1), b4, (ab)2, b2ab2ag〉.

In this paper we prove that both the Accola-Maclachlan and the Kulkarni sur-
faces are symmetric and we determine their symmetries. The results are given
in the Table in Theorem 3.2. Our purpose is to not only examine the symmetries
themselves, but also to determine the real forms of these two special families of Rie-
mann surfaces. Before proceeding, let us recall a few facts about symmetries and
real forms. Let X be a surface of genus g. The group of conformal automorphisms
of X is denoted by Aut+(X), and the group of all automorphisms of X , both
conformal and anti-conformal, is denoted by Aut±(X). A symmetry σ of X is an
anti-conformal, involutary automorphism, i.e., an element of Aut±(X)\Aut+(X) of
order 2. The fixed point set Xσ ⊂ X of a symmetry σ is a finite number of disjoint
curves diffeomorphic to circles, which are called ovals of the symmetry. We denote
by k(X, σ) the number of ovals of σ. Define the symbol ε(X, σ) to be 0 if X \Xσ

is not connected - (we say that σ is separating) - and 1 otherwise - (we say that σ
is non-separating). To abbreviate we define the species of (X, σ) as

sp(X, σ) =
{

+k(X, σ) if ε(X, σ) = 0,
−k(X, σ) if ε(X, σ) = 1.

(1)

Two pairs (X, σ) and (Y, τ) are said to be topologically equivalent if there exists
a homeomorphism h : X → Y such that τh = hσ. Weichold [16] proved that (X, σ)
and (Y, τ) are topologically equivalent if and only if X and Y have the same genus
and sp(X, σ) = sp(Y, τ). Later, Harnack [5] proved that given a triple of integers
(g, k, ε) there exists a pair (X, σ) such that g is the genus of X , k = k(X, σ) and
ε = ε(X, σ) if and only if

1 ≤ k + ε ≤ g + 1 ; k ≡ g + 1 mod (2− ε).(2)

Clearly, two conjugate symmetries σ and τ on X with respect to Aut±(X) have
the same species since the pairs (X, σ) and (X, τ) are topologically equivalent. The
symmetry type of a surface is the list of species of all conjugacy classes of symmetries
occurring in Aut±(X).

There is a 1-1 correspondence between symmetries and real forms of algebraic
curves. In particular, if an algebraic curve can be defined by polynomial equa-
tions with real coefficients, then complex conjugation defines a symmetry of the
corresponding Riemann surface. The ovals of a symmetry are the connected com-
ponents of the corresponding real form. A real form is separating if it disconnects
its complexification, and non-separating otherwise.

We shall determine the symmetry types of the Accola-Maclachlan surfaces and
the Kulkarni surfaces, computing the number of ovals and separability of the sym-
metries. The results are then applied to determine the real forms of these complex
algebraic curves. Explicit equations of the real forms of the curves are given in all
cases but one.

2. Number of ovals

From the Riemann uniformization theorem, every compact Riemann surface X of
genus g ≥ 2 can be represented as the quotient H/Γ of the upper half complex plane
H under the action of a fuchsian surface group Γ. Thus there exists a Fuchsian
group ∆ containing Γ as a normal subgroup such that G = Aut+(X) = ∆/Γ.
Although the method we are going to outline works in a more general setting, as in
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[4], for X = Xg or Yg it is sufficient to analyze what happens when ∆ is generated
by three elliptic elements of even distinct orders k, l and m (actually in our case
k = 2(g + 1), l = 4, m = 2).

The unique NEC (non-euclidean crystallographic) group Λ containing ∆ as a
subgroup of index 2 has the presentation

Λ = 〈c0, c1, c2 | c2
0, c

2
1, c

2
2, (c0c1)k, (c1c2)l, (c0c2)m〉

and we shall refer to c0, c1 and c2 as the canonical reflections of Λ.
From the presentations it is trivial to see that the assignment a 7→ a−1, b 7→ b−1

induces an automorphism

ϕ : G → G(3)

and so applying the criterion of Singerman [15] X is symmetric. This is equivalent
to saying that Γ is a normal subgroup of Λ, and precisely, the symmetries on
X are the involutions xΓ ∈ Λ/Γ = G̃, x ∈ Λ \ ∆. We shall see later that the
images θ(ci) = σi, i = 0, 1, 2, of the c-reflections under the canonical projection
θ : Λ → Λ/Γ are not conjugate in G̃. Since all reflections in Λ are conjugate to one
of the c-reflections and each symmetry σ in X with a non-empty set of fixed points
Xσ is the image σ = θ(c) of some reflection c ∈ Λ (see [4]), classifying all symmetries
σ with Xσ non-empty reduces to computing the species sp(X, σi), i = 0, 1, 2. In
this section we calculate k(X, σi) = ki. If we represent the subgroup 〈σi〉 as Λi/Γ
for some group Λi ⊂ Λ it follows that ki is the number of boundary components of
the Klein surface X/〈σi〉 = H/Λi. In other words, ki is the number of conjugacy
classes of reflections in Λi. If Ci is the preimage under θ of the centralizer C(G̃, σi)
of σi in G̃, the set of all reflections of Λi is

Ri = {cw
i = wciw

−1 : w ∈ Ci}.
Now given u, v ∈ Ci, the reflections cu

i and cv
i are conjugate in Λi if and only if

u−1γv ∈ C(Λ, ci) for some γ ∈ Λi. On the other hand, u−1γv = (u−1v)(v−1γv). So
as Ci normalizes Λi, we see that u−1γv ∈ C(Λ, ci) if and only if u−1v ∈ C(Λ, ci)Λi =
C(Λ, ci)Γ. Hence we get

ki = [Ci : C(Λ, ci)Γ] = [Ci/Γ : C(Λ, ci)Γ/Γ] = [C(G̃, σi)) : θ(C(Λ, ci))].(4)

In particular, for i = 0 it is easy to prove that

C(Λ, c0) = 〈c0〉 ⊕
(
〈(c0c1)k/2〉 ∗ 〈(c0c2)m/2〉

)
(5)

and so

k0 =
#C(G̃, σ0)

4#((σ0σ1)k/2(σ0σ2)m/2)
(6)

and similar formulae can be found for k1 and k2 (see [4] and [15]).
Let us attack the explicit computations in case X = Xg. Here we have

θ : Λ → Λ/Γ = Aut+(X)×ϕ Z2 = 〈a, b〉 ×ϕ 〈t〉(7)

defined by
θ(c0) = at, θ(c1) = t, θ(c2) = tb,

where ϕ is defined in (3).
To apply (6) we must check that σ0, σ1, σ2 are not conjugate in G̃. In fact,

each element x ∈ G̃ can be written in a unique way as x = arbstµ with 0 ≤ r ≤
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2g + 1, 0 ≤ s ≤ 3, 0 ≤ µ ≤ 1. Hence, xtx−1 = a2rb2st as b2 commutes with a. So
σ0 = at and σ1 = t are not conjugate. Analogously we check the other two cases.
Let us calculate the order of C(G̃, σ0). The element x ∈ G̃ above commutes with
σ0 if and only if either

a = arbsabsar, µ = 0 or a = arbsa−1bsar, µ = 1.

In both cases we have eight solutions. In the first case we have

s = 0, 2 ; r = 0, g + 1 and s = 1, 3 ; r = 1, g + 2.

while in the the second case we have

s = 0, 2 ; r = 1, g + 2 and s = 1, 3 ; r = 0, g + 1.

Consequently, #C(G̃, σ0) = 16. On the other hand, (σ0σ1)k/2(σ0σ2)m/2 = ag+2b
has order 2 for odd g and order 4 for even g. Hence from (6), k0 = 2 for odd g and
k0 = 1 for even g. Similarly we prove that k1 = 1 and k2 = g + 1.

We still have to determine how many conjugacy classes of symmetries without
fixed points exist. Such symmetries are elements of order 2, y = arbst ∈ G̃ which
are not conjugate to t, at, tb and it is easy to see that there is exactly one class of
such elements for even g represented by ab2t, and two classes represented by ab2t
and ag+1bt if g is odd.

Concluding, for odd g, Xg has five classes of symmetries: two without fixed
points, and three σ0, σ1, σ2 with 2, 1 and g + 1 ovals, respectively. For even g there
are four conjugacy classes of symmetries: one without fixed points, two with one
oval and one more with g + 1 ovals.

The analysis of the symmetries of Yg for g ≡ 3 mod 4 follows the same technical
lines. There are three classes of symmetries σ0, σ1, σ2 with fixed points having 2, 1
and (g + 1)/4 ovals and if g ≡ 3 mod 8 there is exactly one more class without
fixed points.

3. Separability character of the symmetries

Let σ be a symmetry on X = Xg or Yg. If Xσ is empty, then σ is non-separating.
Thus, in what follows we are going to compute ε(X, σi), i = 0, 1, 2, with the notation
of the preceding sections. It follows from (1) that ε = 0 if k = g + 1, and ε = 1
when k = 1 and g is odd. Furthermore since (g + 1)/4 is odd for g ≡ 3 mod 8, we
conclude that ε = 1 in the case k = g+1

4 , X = Yg, g ≡ 3 mod 8. Consequently

sp(X, σ) =


+(g + 1) if (X, σ) = (Xg, σ2),
−1 if σ = σ1 except if X = Xg and g is even,

−(g + 1)/4 if(X, σ) = (Yg, σ2) and g ≡ 3 mod 8.

(8)

On the other hand, surfaces admitting a symmetry σ2 with species +(g+1) have
been studied by Natanzon in [14] and by Bujalance and Costa in [3] and it follows
directly from Theorem 3.3 in the latter paper that

sp(Xg, σ0) = +2 if g is odd.(9)

To calculate ε(X, σ) in the remaining cases we use two distinct strategies. First
we prove:

sp(X, σ) =

{
−1 if (X, σ) = (Xg, σ1) and g is even,

−(g + 1)/4 if (X, σ) = (Yg, σ2) and g ≡ 7 mod 8.
(10)



SYMMETRIES OF ACCOLA-MACLACHLAN AND KULKARNI SURFACES 641

For this purpose we need the following result which combines Theorem 1 in [11]
and Lemma 2.8 in [2]:

Proposition 3.1. Let G = Aut+(X), X = Xg or Yg, with the presentation of the
introduction. Let σ, τ be two commuting symmetries on X. Let us define for each
x ∈ G the integer δx to be either 1 if h = στ is conjugate in G to some power of x
and 0 otherwise. Then, if σ is separating, the following inequality holds:

#C(G, h)
(

δa

2g + 2
+

δb

4
+

δab

2

)
≤ 2k(X, σ).(11)

Now if we apply this with X = Xg, σ = σ1, τ = σ2σ1σ
−1
2 , then h = b2 has order

2, δa = δab = 0, δb = 1 and #C(G, h) = 8(g + 1). Hence, if σ1 is separating we get
from (11) g + 1 ≤ k(Xg, σ1) ≤ 1, a contradiction. Analogously, if X = Yg, σ = σ2,
and τ = σ1σ2σ

−1
1 we get again h = b2 has order 2, δa = δab = 0, δb = 1 and now

#C(G, h) = 4(g + 1). Thus if σ2 is separating, (g + 1)/4 = k(Yg, σ2) ≥ (g + 1)/2
which is absurd. This proves (10).

To finish we prove the following

sp(Xg, σ0) = +1 if g is even; sp(Yg, σ0) = −2.(12)

In this case we apply a different approach due to Hoare and Singerman [6]. Let
X be either Xg or Yg and with the notation in Section 2 let Γ be a Fuchsian surface
group uniformizing X . Let us consider the subgroup K = 〈σ0, σ1〉 of G̃ = Aut±(X),
which is isomorphic to the dihedral group D2g+2 of 4g + 4 elements. Then K can
be written as Γ′/Γ for some NEC-group Γ′ whose signature

σ(Γ′) = (0; +; [−]; {(2g + 2, 2g + 2, g + 1)})
can be easily computed by the Riemann-Hurwitz formula (see e.g. [13] pg. 438).
Let ρ0, ρ1, ρ2 be a set of canonical reflections generating Γ′ such that the natural
projection Φ : Γ′ → K maps ρj 7→ σj , j = 0, 1. It is easy to see that

Φ(ρ2) =
{

σ0(σ1σ0)2g if X = Xg,
σ0(σ1σ0)g−1 if X = Yg.

Following the quoted result in [6], the symmetry σ0 is separating if and only if
the Schreier graph S of the set of cosets K/〈σ0〉 corresponding to the system of
generators {Φ(ρj) : j = 0, 1, 2} is bipartite. Assume now X = Xg. The 2g + 2
classes in K/〈σ0〉 are denoted by K/〈σ0〉 = {[i] : 0 ≤ i ≤ 2g + 1}, where
[i] = {(σ0σ1)i, (σ0σ1)iσ0}. To produce the graph S it is necessary to know how
each Φ(ρj), j = 0, 1, 2, links two vertices of K/〈σ0〉. But it is easy to check that the
action of Φ(ρj) on the vertices is given by

Φ(ρj)([i]) = [2g + 2− i− j], 0 ≤ i ≤ 2g + 1, 0 ≤ j ≤ 2.

Then the Schreier graph S (with the loops deleted) admits a bipartition

V1 = {[i] : 0 ≤ i ≤ g} ; V2 = {[i] : g + 1 ≤ i ≤ 2g + 1}
of the set of vertices of S, and so, σ0 is separating in this case. In a similar way
it is proved that σ0 is not separating if X = Yg. We summarize our results in the
following Theorem.
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Theorem 3.2. The symmetry types of the Accola-Maclachlan surface and the
Kulkarni surface are as in the following table:

X g σ0 σ1 σ2

Xg odd +2 −1 +(g + 1)
Xg even +1 −1 +(g + 1)
Yg ≡ 7 mod 8 −2 −1 −(g + 1)/4
Yg ≡ 3 mod 8 −2 −1 −(g + 1)/4

4. Real plane curves representing the real forms

Let N = g + 1, P (z) = z2N − 1 and consider the complex plane curve

C = {(z, w) ∈ C2 : w2 = P (z)}.
It follows from Theorem 3.2 that there exist three polynomials Qi(z) ∈ R[z], i =

0, 1, 2, such that each curve Ci = {(z, w) ∈ C2 : w2 = Qi(z)} is C-birationally
isomorphic to C, and their real parts Ci(R) = {(z, w) ∈ R2 : w2 = Qi(z)} have
the species of the symmetries σi, i = 0, 1, 2. Let Xi denote a projective, smooth,
real model of Ci(R), i.e, a smooth, projective real algebraic curve, R-birationally
isomorphic to Ci(R). Let us denote by Xg a (common) nonsingular complexification
of Xi. We must prove that:

4.1. X1 and Xg −X1 are connected.
4.2. X0 is connected if N is odd and it has two connected components if N is

even. In both cases Xg −X0 is not connected.
4.3. X2 has N connected components, thus Xg −X0 is not connected.
In order to construct the polynomials Qi, we examine the automorphism group

of Xg. Recall that a presentation of the automorphism group G of Xg is

G = 〈a, b | a2N , b4, (ab)2, ab2a−1b2〉.
We can explicitly determine the generators a and b, in fact, since C and Xg are

C-birationally isomorphic, G is isomorphic to the group of automorphisms of the
function field kg = (C[z, w]/w2 − P (z))(0). It is easy to see that if ξ = e

2πi
2N , the

maps a, b : kg → kg defined by

a(z) = ξz, a(w) = −w; b(z) =
1
z
, b(w) =

iw

zN
; a, b | C = identity,

are isomorphisms satisfying the required relations.
Moreover, complex conjugation on C corresponds to the R-isomorphism σ of

kg defined by σ(z) = z, σ(w) = w, σ(i) = −i. We can explicitly compute the
action of a, b and σ on z, w and i and it follows that σaσ = a−1; σbσ = b−1; aσ, bσ
are symmetries of Xg. Observe the similarity with the equalities tat−1 = a−1;
tbt−1 = b−1; at = θ(c0), tb = θ(c2) from Section 2. For technical reasons we have
chosen bσ instead of σb = σ(bσ)σ−1, but both are conjugates. We will see that
σ, aσ and bσ are representatives of the conjugacy classes of symmetries with fixed
points in Xg. This will allow us to calculate the polynomials Qi. In fact we prove
that, with the notations of Section 3, σ ≡ σ1, aσ ≡ σ0 and bσ ≡ σ2.

The fixed subfield of σ is R(z, w), so we choose Q1(z) = P (z). Let us prove 4.1.
The only point at infinity (0 : 1 : 0) of C = C1 is singular. From w2 = z2N − 1
it follows ( w

zN )2 = 1 − 1
z2N and so z = ∞ if and only if w

zN = ±1. Hence, Xg is
the affine curve C1 with two points adjoined. We can represent Xg as a glueing
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2

3

1

4
(0,−1)
(0,1) (0,√d )

(0,−√d )
T0(R)C0(R)

N odd

Figure 1

by defining t = 1
z , and s = w

zN . Note that s2 = 1 − t2N if (z, w) ∈ C1. Then,
ϕ : C1 → T1 = {(t, s) ∈ C2 : s2 = 1 − t2N} defined by ϕ(z, w) = (1

z , w
zN ) is

a birational isomorphism preserving the real parts. Note that t = 0, s = ±1 at
the points at infinity, and so Xg can be viewed as the glueing of C1 and T1 via
ϕ, along the points z 6= 0, t 6= 0. Since ϕ(C1(R)) = T1(R) and C1(R) does not
intersect the line (z = 0), it follows that X1 is connected because T1(R) is. Let us
check that Xg −X1 is also connected. The map T1 → C : (t, s) → t is a ramified
double covering which ramifies at t = ξk, k = 0, 1, . . . , 2N − 1, with two sheets
sε : C → T1 : t → (t, ε

√
1− t2N ), ε = ±1. The real points of T1 project onto the

closed interval [−1, 1] ⊂ R. Hence, using circles around the branching points, one
can connect, avoiding points with t ∈ [−1, 1], points in the upper sheet with points
in the bottom sheet, and so Xg −X1 is connected.

We now construct Q0. To do this, we determine two algebraically independent
elements in kg, fixed under the action of aσ. However, it is easy to see that z1 =
(1 + ξ)z and w1 = iw are fixed by aσ Since kg = C(z, w) = C(z1, w1), we can
express the equation w2 = z2N − 1 of C in terms of z1 and w1. In fact w = −iw1,
and z = z1

1+ξ . Thus, −w2
1 = z2N

1
(1+ξ)2N − 1. By defining d = −1

(1+ξ)2N , we obtain
w2

1 = 1 + dz2N
1 . Note that | ξ |= 1 and Arg(ξ) = π

N , thus Arg(1 + ξ) = π
2N and

Arg(1 + ξ)2N = π. Thus d is a positive real number. We define Q0(z) = 1 + dz2N .
It is obvious that C0 is C-isomorphic to C.

We now prove 4.2. First we count the number of connected components of X0.
We represent Xg as before as the glueing of C0 with T0 = {(t, s) ∈ C2 : s2 = d+t2N}
via the isomorphism ϕ : C0 → T0 : (z, w) → (1

z , w
zN ), along the points z 6= 0,

t 6= 0 . This glueing behaves quite differently according to the parity of N . If
N is even, the intersection of C0(R) with the j-quadrant of R2, j = 1, 2, 3, 4,
labelled counterclockwise, is identified with the intersection of T0(R) with the same
quadrant. If N is odd, the intersections with quadrants 2 and 3 are interchanged.

Considering Figure 1, one realizes that X0 has two connected components if N
is even, since the points at infinity (0, 1) and (0,−1) of C0(R) cannot be joined by
a path, while X0 is connected if N is odd, because you can jump from the points
in T0(R) lying in the second quadrant to the points in C0(R) lying on the third
quadrant.
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To check that Xg − X0 is disconnected, note that it is included in C0, since
X0 contains the two points at infinity (0,±√d) of T0. Now, consider two points
P0 = (z0, w0) and P

′
0 = (z

′
0, w

′
0) in Xg − X0 such that Im(z0) > 0, Im(z′0) < 0.

These two points cannot be joined by a path in Xg−X0. Otherwise, let γ : [0, 1] →
Xg − X0 : s → (γ1(s), γ2(s)) be such a path. Since γ1(0) and γ1(1) are complex
numbers whose imaginary parts have opposite signs, there exists s ∈ (0, 1) such
that γ1(s) ∈ R. Then, 1+ γ1(s)2N is a positive real number, whose square is γ2(s),
and so γ(s) ∈ X0, a contradiction. This finishes 4.2.

We now construct the polynomial Q2. As before, we try to find two elements
in kg, fixed by bσ and algebraically independent over C. Note that X2 has N
connected components, so C2(R), should have N + 1 components, and for this
to occur, Q2 must have 2N distinct real roots. So we transform the polynomial
P (z) = z2N − 1 with roots ξk, k = 0, 1, . . . , 2N − 1, into Q2(z) with 2N real
roots, such that C and C2 are birationally isomorphic over C. Consider the roots
ξ, 1,−1 of P ; we will transform these to the roots 0, 1,−1 of Q2. The only Möbius
transformation Φ : P1(C) → P1(C) which maps ξ → 0, 1 → 1 and −1 → −1 is
Φ(z) = z−ξ

1−ξz = z1, and this element is fixed by bσ, as can be easily checked!
It is evident that each ak = Φ(ξk) ∈ R, k = 0, 1, . . . , 2N − 2, and a2N−1 =

Φ(ξ2N−1) = ∞, and these numbers ak are pairwise distinct because Φ is injective.
The inverse map of Φ is Ψ(z) = z+ξ

1+ξz and the rational function R(z) = P (Ψ(z))
vanishes at each ak. But,

R(z) = (
z + ξ

1 + ξz
)2N − 1 =

(z + ξ)2N − (1 + ξz)2N

(1 + ξz)2N

and S(z) = (z + ξ)2N − (1 + ξz)2N ∈ C[z] is a polynomial of degree 2N − 1
which vanishes at a0, . . . , a2N−2, and whose leading coefficient is 2N(ξ − ξ−1) =
4Ni sin π

N = ρ2 , where ρ = ηe
πi
4 and η is a real positive number. Thus, S(z) =

ρ2Q2(z), where
Q2(z) = (z − a0) . . . (z − a2N−2)

is the polynomial we are looking for.
Note that the map α : C → C2 : (z, w) → (Φ(z), ρ−1w(1+ξΦ(z))N) is a rational

mapping for, if (z, w) ∈ C, then upon setting Φ(z) = u, i.e., Ψ(u) = z, we obtain

w2 = z2N − 1 = Ψ(u)2N − 1 = P (Ψ(u)) = R(u) =
S(u)

(1 + ξu)2N

=
ρ2(u− a0) · · · (u− a2N−2)

(1 + ξu)2N
,

i.e.,
(u− a0) · · · (u− a2N−2) = [ρ−1w(1 + ξu)N ]2.

In fact α is an isomorphism with inverse α−1 : C2 → C : (u, v)→(Ψ(u), ρv
(1+ξu)N ).

Thus C2 is C-isomorphic to C and X2 has N components. We are in a position
to prove also that bσ represents the symmetry σ2 of the previous section. In fact,
w1 = ρ−1w(1 + ξz1)N ∈ kg is fixed by bσ because bσ(w1) = (ρ̄)−1 iw

zN (1 + ξ̄z1)N ,
and since ξ̄ = ξ−1 and ρ̄ = −iρ, we get

bσ(w1) =
i

ρ

iw

zN
(1 +

z1

ξ
)N =

w

ρ

(ξ + z1)N

zN
= w1.
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Hence the map α : C → C2 is α(z, w) = (z1, w1) and R(z1, w1) is the fixed field of
bσ, and so it represents σ2.

For the sake of completeness we also consider the symmetries ab2σ and aNbσ
(the last only for even N) which are fixed point free. The first fixes both w and
u = (1 + ξ)z. From the equation w2 = z2N − 1 ones gets w2 = u2N

(1+ξ)2N − 1. We
already noted that γ = 1

(1+ξ)2N is a real negative number, and so the curve D1 =
{(u, w) ∈ C2 : w2 = γu2N − 1} is C-isomorphic to C via the map (z, w) → (u, w),
but the set D1(R) of real points of D1 is empty.

Finally, if N is even, aNbσ is a symmetry which is not a conjugate of ab2σ, and
it maps z to −1

z and w to iw
zN . Let M = N

2 . Then aNbσ fixes y = z− 1
z , x = i(z+ 1

z )
and t = λw

zM , where λ = 1 + (−1)M i. Then z = x+iy
2i , 1

z = x−iy
2i and w = tzM

λ .
After substituting in z2N − 1 = w2, we get 0 = F (x, y, t) = t2 + 1

2N−2

∑M−1
j=0 (−1)j(

N
2j+1

)
xN−1−2jy2j+1. Also, G(x, y) = x2 + y2 + 4 = 0 . Thus C is C-isomorphic

to D2 = {(x, y, t) ∈ C3 : F (x, y, t) = G(x, y) = 0} and D2(R) is empty.
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