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Abstract. We give a combinatorial proof of the Dedekind–Mertens formula
by computing the initial ideal of the content ideal of the product of two generic
polynomials. As a side effect we obtain a complete classification of the rank 1
Cohen–Macaulay modules over the determinantal rings K[X]/I2(X).

Let f, g be polynomials in one indeterminate over a commutative ring A. The
Dedekind-Mertens formula relates the content ideals of f , g, and their product fg:
one has

c(fg)c(f)d = c(g)c(f)d+1, d = deg g.

It is the best universally valid variant of Gauß’ classical formula c(fg) = c(f)c(g)
for polynomials over a principal ideal domain. (The content ideal of f ∈ A[T ] is the
ideal generated by the coefficients of f in A.) Content ideals and the Dedekind–
Mertens formula have recently received much attention; see Glaz and Vasconcelos
[8], Corso, Vasconcelos, and Villarreal [6] and Heinzer and Huneke [9], [10]. For
detailed historical information about the Dedekind–Mertens formula, see [9].

The main objective of this paper is a combinatorial proof of the formula based
on a Gröbner basis approach to the ideal c(fg) for polynomials with indeterminate
coefficients; in fact we will determine the initial ideal of c(fg) with respect to a
suitable term order. (For information on term orders and Gröbner bases we refer
the reader to Eisenbud [7].) A side effect of our approach is very precise numerical
information about the rank one Cohen–Macaulay modules over the determinantal
ring S = K[X ]/I2(X) where X is an m × n matrix of indeterminates and I2(X)
the ideal generated by its 2-minors. This connection extends the ideas of [6] and
was in fact suggested by them. The actual motive for our work was the need for
some explicit computation modulo c(fg) in Boffi, Bruns, and Guerrieri [2], or, more
precisely, modulo an ideal generalizing c(fg) slightly.

Theorem 1. Let K be a field, R = K[Y1, . . . , Ym, Z1, . . . , Zn] and set

dk =
∑

i+j=k

uijYiZj, k = 2, . . . , m + n,
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with uij ∈ K, uij 6= 0 for all i and j. Furthermore let S denote the set of the
monomials

Yi1 · · ·YiuZj1 · · ·Zjv , 0 ≤ u < j1, 0 ≤ v < m + 1− iu.

Then the set N of the monomials µ /∈ S generates the initial ideal of the ideal
I = (d2, . . . , dm+n)R with respect to the reverse-lexicographic term order on R
induced by the order

Y1 > · · · > Ym > Z1 > · · · > Zn

of the indeterminates. In particular, S is mapped to a K-basis of R/I under the
natural homomorphism.

Proof. We first show that N is contained in the initial ideal in(I). Each µ ∈ N
is divisible by one of the monomials (1) YiZj1 · · ·Zjv with i ≥ m + 1 − v or (2)
Yi1 · · ·YiuZj with j ≤ u. Therefore it is enough to consider the monomials of type
(1) and type (2).

(1) In order to conclude that µ = YiZj1 · · ·Zjv ∈ in(I) we show the following
claim: modulo I the monomial µ is a K-linear combination of monomials Ykν where
ν is a monomial in Z1, . . . , Zn with ν < Zj1 · · ·Zjv and k < m + 1− v. (Of course,
we allow the linear combination to be empty, in which case µ ∈ I.) In fact, µ is the
initial monomial of the element of I representing the relation between µ and the
Ykν modulo I.

The claim is proved by induction on v. In the case v = 1 one simply uses that
YmZj1 is the initial monomial of dm+j1 and that the other monomials occurring in
dm+j1 satisfy the requirements of the claim.

In the case v > 1 we must use an additional induction on Zj1 · · ·Zjv with respect
to the term order. In the first step we replace YiZj1 by a linear combination of the
other monomials YrZs in di+j1 . If s > j1, then ZsZj2 · · ·Zjv < Zj1 · · ·Zjv in the
term order; if in addition r < m + 1 − v, then YrZsZj2 · · ·Zjv is compatible with
our claim, and otherwise we may use induction on the term order.

Suppose now that s < j1. Then r ≥ m+1− (v− 1), and we can apply induction
on v to YrZj2 · · ·Zjv . Thus we can replace YrZj2 · · ·Zjv by a linear combination of
monomials YqZk2 · · ·Zkv with Zk2 · · ·Zkv < Zj2 · · ·Zjv . (We need not take care of
q). Now it only remains to check whether ZsZk2 · · ·Zkv < Zj1 · · ·Zjv ; if so, we can
again apply induction on the term order.

We rewrite ZsZk2 · · ·Zkv = Zl1 · · ·Zlv with l1 ≤ · · · ≤ lv. Whether s ≤ k2 or
otherwise, one has

Zl2 · · ·Zlv ≤ Zk2 · · ·Zkv < Zj2 · · ·Zjv .

This implies Zl1 · · ·Zlv < Zj1 · · ·Zjv since j1 ≤ j2. (It is of course essential that we
are using the reverse-lexicographic term order in which Z1 > · · · > Zm.)

(2) We claim: modulo I a monomial µ = Yi1 · · ·YiuZj with j ≤ u is a K-
linear combination of monomials νZk with k > u and a monomial ν in Y1, . . . , Ym.
Observe that no condition on ν is necessary: k > j implies that νZk < µ; thus µ
is the initial monomial of the element of I representing the relation established by
the claim.

The substitution Yi 7→ Ym+1−i, Zj 7→ Zn+1−j induces an automorphism on
R that maps the ideal I onto itself. Therefore we can replace our claim by the
following: modulo I a monomial Yi1 · · ·YiuZj with j ≥ n + 1 − u is a K-linear
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combination of monomials νZk with k < n+1−u and a monomial ν in Y1, . . . , Ym.
However, this has been proved in (1) with the roles of Y and Z exchanged.

It remains to show that the monomials in S are linearly independent modulo I.
To this end we introduce the subalgebra

S = K[YiZj : i = 1, . . . , m, j = 1, . . . , n].

The elements dk belong to S, and we set J = (d2, . . . , dm+n)S. As an S-module,
R decomposes into the direct sum

R =
⊕
δ∈Z

Mδ,

where Mδ is the K-vector space generated by all monomials µ such that degY µ−
degZ µ = δ (degY µ is the number of factors Yi dividing µ). Then M0 = S. As an S-
module, Mδ, δ ≥ 0, is generated by the monomials Yi1 · · ·Yiδ

, and a corresponding
statement holds for Mδ, δ ≤ 0, and the monomials Zj1 · · ·Zj−δ

.
This decomposition of R induces the decomposition R/I ∼= ⊕

δ∈Z Mδ/JMδ of
S/J-modules. Since each monomial in S belongs to one of the direct summands,
it is enough to prove the linear independence of the monomials in S ∩Mδ modulo
JMδ. We have already shown that their residue classes span Mδ/JMδ as a vector
space.

Suppose first that δ ≥ n− 1 or δ ≤ −(m− 1). Then the elements of S ∩Mδ are
the monomials

Yi1 · · ·Yiδ
and Zj1 · · ·Zj−δ

,

respectively. It is obvious that they are linearly independent modulo JMδ.
In the cases −(m − 1) ≤ δ ≤ n − 1 we count the elements of S ∩ Mδ. (The

values δ = n− 1 and δ = −(m− 1) in which both arguments overlap are of special
interest.) Suppose first that δ ≥ 0. Then S ∩Mδ consists exactly of the monomials

Yi1 · · ·YiuZj1 · · ·Zju−δ
, iu ≤ m− u + δ, j1 ≥ u + 1,

where u ranges over all positive integers ≥ δ. However, the inequalities can only
be satisfied by at least one monomial if u ≤ m + δ − 1 and u ≤ n − 1. With
N = min(m + δ − 1, n− 1), we have

dimK Mδ/JMδ ≤ #(S ∩Mδ) =
N∑

u=δ

(
(m− u + δ) + u− 1

u

)(
(n− u) + u− δ − 1

u− δ

)

=
N−δ∑
v=0

(
(m− 1) + δ

m− 1− v

)(
(n− 1)− δ

v

)
=

(
(m− 1) + (n− 1)

m− 1

)
.

For −(m− 1) ≤ δ ≤ 0 one obtains the same result.
But we also have a lower bound on dimK Mδ/JMδ. Note that Mδ is a rank 1

module over S: multiplication by Zδ
1 in the case δ ≥ 0 and Y

(−δ)
1 in the case δ ≤ 0

maps Mδ bijectively onto a non-zero ideal of S. It is well known that

S ∼= K[X ]/I2(X),

where X is an m × n matrix of indeterminates, I2(X) the ideal generated by its
2-minors, and the isomorphism is induced by the substitution Xij 7→ YiZj. The
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1-forms dk form a system of parameters in S. This follows as in the special case
in which uij = 1 for all i and j (for example, see Bruns and Vetter [4], (5.9)).
Therefore

dimK Mδ/JMδ ≥ e(S),

where e(S) is the multiplicity of S; see Bruns and Herzog [3], 4.6.11. The multi-
plicity of S is

e(S) =
(

(m− 1) + (n− 1)
m− 1

)
;

it is not hard to compute since S is the Segre product of the polynomial rings
K[Y1, . . . , Ym] and K[Z1, . . . , Zn] (see Herzog and Trung [11] for the multiplicities
of determinantal rings in general).

Since #(S∩Mδ) ≤ dimK Mδ/JMδ and S∩Mδ represents a system of generators
of Mδ/JMδ, we conclude that S ∩Mδ represents a basis of Mδ/JMδ and that

dimK Mδ/JMδ =
(

(m− 1) + (n− 1)
m− 1

)
= e(S).

In conjunction with the linear independence of S modulo I, the inclusion N ⊂
in(I) implies that in(I) is generated by N .

Our first corollary is the Dedekind–Mertens formula.

Corollary 2. Let A be a commutative ring, f, g ∈ A[T ], and set d = deg g. Then

c(fg)c(f)d = c(g)c(f)d+1.

In general, the exponent d cannot be replaced by a smaller number.

Proof. It is enough to treat the “generic” case in which the coefficients of f and g are
indeterminates over Z, and A is the polynomial ring over Z in these indeterminates.
Furthermore, the formula holds over Z if and only if it holds over Q and modulo
all prime numbers p. Therefore we may then replace Z by a field.

Let U0, . . . , Uc and V0, . . . , Vd be the coefficients of f and g, respectively. Then
c(fg) is generated by the elements

∑
i+j=k YiZj, and we are in the situation of the

theorem upon setting m = c + 1, n = d + 1, Yi = Ui+1, and Zj = Vj+1.
The inclusion “⊂” holds for trivial reasons, and to verify the converse we must

show that every monomial µ with degY µ = d + 1 and degZ µ = 1 is contained
in I (with the notation of the theorem). However, the standard basis S contains
no monomial of bidegree (n, 1) and J is generated by bihomogeneous elements.
Therefore all monomials of bidegree (n, 1) belong to I.

Since S contains monomials of bidegree (n− 1, 1), the exponent d cannot be re-
duced. (In [6] this was proved in the case in which deg g ≤ deg f ; the argument uses
information on the Hilbert series of S that, for example, is contained in Corollary
4 below.)

The proof of the theorem has given us very precise information on the modules
Mδ. This information can be interpreted homologically.

Corollary 3. With the notation introduced in the proof of the theorem, the modules
Mδ, −(m − 1) ≤ δ ≤ n − 1, represent the isomorphism classes of rank 1 Cohen–
Macaulay S-modules.
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Proof. If δ ≥ 0, then multiplication by Zδ
1 maps Mδ isomorphically on the δ-th

power of the ideal Q generated by the elements xi1 = YiZ1 in S. An analogous
statement holds for δ ≤ 0 and the ideal P generated by the x1j . By a result
of Bruns (see [4], (8.4) and (9.18)) the powers of P and Q represent the divisor
classes of S. Therefore it only remains to find out which of the modules Mδ are
Cohen–Macaulay.

Since rankMδ = 1, its Cohen–Macaulay property is equivalent to the equation
dimK Mδ/JMδ = e(S); see [3], 4.6.11. We have verified this equation for−(m−1) ≤
δ ≤ n−1. For all other values of δ, the minimal number of generators of Mδ exceeds
e(S).

The Cohen–Macaulay property of Mn−1 is actually equivalent to the Dedekind–
Mertens formula. In fact, let m be the irrelevant maximal ideal of S. Then
dimK Mn−1/mMn−1 = e(S) so that the equality dimK Mn−1/JMn−1 = e(S) forces
JMn−1 to be equal to mMn−1. This is another way to read the Dedekind–Mertens
formula.

It seems that the exact value of depth Mδ is not known for δ outside the range
specified in the lemma. However, its asymptotic values have been computed:
depth Mδ = n− 1 for δ � 0 and depth Mδ = m− 1 for δ � 0 (see [4], (9.27)(c)).

It would be interesting to generalize Corollary 3 to all the determinantal rings
Sr = K[X ]/Ir+1(X). The divisor classes of Sr are again represented by the powers
of the ideal P generated by the r-minors of the first r rows and the powers of the
corresponding ideals for the columns. An easy localization argument (ubiquitous
in [4]) by which the Cohen–Macaulay property descends to the case r = 1 shows
that P k and Ql can only be Cohen–Macaulay for k ≤ m− r and l ≤ n− r, and we
conjecture that they are indeed Cohen–Macaulay for these values.

For the previous corollary only the multiplicity of Mδ was used, but we have
actually computed its Hilbert series. The Hilbert series can be written as a rational
function

H(t) =
h0 + h1t + · · ·+ hst

s

(1− t)m+n−1
,

since dimK Mδ = dimK S = m + n− 1. In the next corollary we confine ourselves
to the case δ ≥ 0. The other case follows by exchanging m and n, δ and −δ.

Corollary 4. The coefficients of the numerator of the Hilbert series of Mδ, δ ≥ 0,
are given by

hu =

{(
m−1+δ

u

)(
n−1−δ

u−δ

)
δ ≤ u ≤ min(m− 1 + δ, n− 1),

0 else.

Proof. Since Mδ is Cohen–Macaulay, the homogeneous system of parameters d1, . . . ,
dm+n is a regular sequence on Mδ. Therefore hu = dimK(Mδ/JMδ)u, where the
index u indicates the graded component of degree δ. (The elements xij = YiZj have
degree 1 in S.) This number has been computed in the proof of the theorem.

It is not hard to check that among all the modules Mδ exactly one has the
highest coefficient hs = 1, namely Mn−m. It follows immediately that Mn−m is the
canonical module of S, a result that has been shown by another approach in [4].
For δ = 0, Mδ = S, one can also compute the Hilbert series using the fact that S is
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the Segre product of the polynomial rings K[Y1, . . . , Ym] and K[Z1, . . . , Zn]. (See
Conca and Herzog [5] for the Hilbert series of determinantal rings in general).

Some further aspects of our results have been collected in the following remarks.

Remarks 5. (a) From the view point of determinantal rings, a basis of Mδ/JMδ,
δ ≥ 0, in terms of the generators Yi1 · · ·Yiδ

of Mδ and the generators xjk of S may
be more natural. By methods similar to those applied in the proof of the theorem
one can show that the elements

Yi1 · · ·Yiδ
xj1k1 · · ·xjuku , i1 ≤ · · · ≤ iδ < j1 · · · < ju < m, δ + 1 < k1 < . . . ku,

represent a K-basis of Mδ/JMδ. (For δ ≤ 0 one has a dual statement.) In partic-
ular, the defining ideal of S/J as a residue class ring of K[X ] has a Gröbner basis
of degree 1 and 2 elements with respect to a suitable term order.

(b) Our results can be formulated for more general rings of coefficients than fields.
For example, let A be a commutative ring and set R = A[Y1, . . . , Ym, Z1, . . . , Zn].
If the coefficients uij of d2, . . . , dm+n are units in A, then R/I is a free A-module,
and the set S represents a basis of R/I.

This is easily reduced to the case of a field of coefficients. In fact, it is enough to
show the statement for the case in which A = Z[U±1

ij ] is a Laurent polynomial ring
over Z. For R/I to be free with basis S over an integral domain A, it suffices that
the dimension of R/I⊗Q(A) coincides with the cardinality of S where Q(A) is the
field of fractions of A. But this follows from Theorem 1 and its proof; in showing
that S generates R/I we have only used that the uij are units.

(c) For an application in [2] we note that µ = Y n−1
1 Zm−1

n belongs to S, and is
therefore non-zero modulo I. However, one has Yiµ ∈ I and Zjµ ∈ I for all i and
j since S contains no element ν with degY ν ≥ n or degZ ν ≥ m.

We can say even more: µ is the only element of bidegree (n − 1, m − 1) in S;
therefore it generates the bidegree (n − 1, m− 1) component of R/I. The same is
true for µ′ = Y n−1

m Zm−1
1 since the automorphism given in the proof of Theorem 1

maps µ to µ′. Therefore there exists a ∈ K, a 6= 0, with µ′ ≡ aµ modulo I. As the
whole argument also works over Z (see (b)), one actually has a = ±1.

(d) The theorem was suggested by MACAULAY [1].
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11. J. Herzog and N. V. Trung. Gröbner bases and multiplicity of determinantal and pfaffian
ideals. Adv. in Math. 96 (1992), 1–37. MR 94a:13012

Universität Osnabrück, FB Mathematik/Informatik, 49069 Osnabrück, Germany
E-mail address: Winfried.Bruns@mathematik.uni-osnabrueck.de
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