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ON THE ESSENTIAL SELF-ADJOINTNESS OF THE GENERAL
SECOND ORDER ELLIPTIC OPERATORS

I. M. OLEINIK

(Communicated by Christopher D. Sogge)

Abstract. In this paper, we give sufficient conditions for the essential self-
adjointness of second order elliptic operators. It turns out that these conditions
coincide with those for the Schrödinger operator on a manifold whose metric
essentially depends on the principal coefficients of a given operator.

1. Basic notation and facts

Let us consider a strongly elliptic second order operator

Lu(x) = −∇ (A(x)∇u(x)) + q(x)u(x),(1)

where x ∈ Rn, n ≥ 1, A(x) : Rn → Rn is a positive definite symmetric matrix,
that is the inequality (A(x)ξ, ξ) > 0 holds for all ξ ∈ Rn, ξ 6= 0, and x ∈ Rn.
We assume that the potential q ∈ L∞loc(Rn) is a real-valued function, and that the
elements aij(x) of the matrix A(x) belong to C∞(Rn).

It is easy to see that the operator L0 defined by the expression (1) on C∞0 (Rn) is
symmetric in L2(Rn). The essential self-adjointness of the operator (1) depends on
the behaviour of the principal coefficients at infinity. S. A. Laptev [14] constructed
an example of the operator (1) in L2(R3) which is bounded from below but not
essentially self-adjoint. On the other hand, it is a well-known fact (see, for example,
P. R. Chernoff [5]) that if the Schrödinger operator (1) with A = I is bounded from
below, then it is essentially self-adjoint. Here I denotes the identity matrix.

It turns out that some restrictions should be imposed on the growth of the
principal coefficients aij(x). A typical example can be found in the paper of T. Ikebe
and T. Kato [12] who assumed that for the function

λ(r) = sup
|x|=r

{(A(x)ξ, ξ) | |ξ| = 1}(2)

the following integral diverges ∫ ∞

0

λ−
1
2 (r) = ∞.(3)

They proved that the bounded from below operator (1) satisfying (3) is essentially
self-adjoint. This can be obtained as a simple corollary of a more general theorem
from [12].
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Yu. B. Orochko [16] used the method of hyperbolic equations to prove the essen-
tial self-adjointness of L0. He considered the Cauchy problem for the wave equation

∂2u(t, x)
∂t2

+ Lu(t, x) = 0(4)

with the initial conditions

u(0, x) = ϕ(x) ∈ C∞0 (Rn),
∂u

∂t
(0, x) = 0.(5)

It turns out that the problem (4)-(5) with the operator L satisfying (3) has the
finite speed propagation property, that is, for each t > 0 the solution u(t, x) has
compact support in Rn, and, therefore, due to Theorem 6.2 [2], the operator L0 is
essentially self-adjoint when it is bounded from below.

A. A. Chumak [7] showed that the question of the finite propagation speed for
the problem (4)-(5) is closely related to the question of the completeness of the
Riemannian manifold M = (Rn, A−1(x)). If the manifold M is complete, then the
finite propagation speed property for the problem (4)-(5) holds, and the operator
(1) is essentially self-adjoint if it is bounded from below. In fact, F.S. Rofe-Beketov
[20] proved that the completeness of M is necessary and sufficient for the finite
propagation speed for the Cauchy problem corresponding to the semibounded below
operator of the type (1).

Chumak’s paper develops a general geometrical view on the principal coefficients
of operator (1). We will also mention the well-known paper of M. Riesz [18] who
studied the geodesic curves of the manifold M in connection with the characteristic
cone for the problem (4)-(5). It turns out that the characteristic cone for the
Cauchy problem (4)-(5) with the vertex at an arbitrary point (t0, x0) ∈ R × Rn

locally has the form Λ(t0,x0) = {(t0 + s, γx0(s)) | γx0 ∈ Γx0}, where Γx0 is a set
of naturally parametrized geodesics on M such that γx0(0) = x0. Thus Chumak
concluded that the solution of (4)-(5) initially supported on a compact set K0 ⊂ Rn

will be supported on a set Kτ =
⋃

x∈K0
B(x, τ) after a time τ > 0 (possibly very

small but fixed). Here B(x, τ) denotes an open ball in M with the center at x and
the radius τ . Due to the Hopf-Rinoff theorem [1] the closure Kτ of the set Kτ is
a compact subset in M . Therefore the finite propagation speed property of (4)-(5)
follows easily from the completeness of the manifold M .

The goal of this paper is to prove the essential self-adjointness of the operator
L0 with the potential possibly not bounded from below.

Theorem 1. Let the operator (1) satisfy the following conditions:

the manifold M = (Rn, A−1) is complete;(6)

there exists a function Q > 1 such that:

∀x ∈M q(x) ≥ −Q(x);(7)

the function Q−
1
2 is a Lipschitz function on M :

|Q− 1
2 (x) −Q−

1
2 (y)| ≤ K · distM (x, y),(8)

where K > 0, and x, y ∈M ; for an arbitrary piecewise smooth curve ` going out to
infinity ∫

`

Q−
1
2 (x)d` = ∞.(9)

Then the operator L0 is essentially self-adjoint.
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Remarks. The distance between two points x, y ∈M in the condition (8) is denoted
by distM (x, y). The curvilinear integral (9) is taken with respect to the distance on
M . The function Q may be equal to +∞ on a set of positive measure. We define
Q−1(x) = 0 when Q(x) = +∞.

The sufficient conditions on the essential self-adjointness of the operator L0 from
Theorem 1 simply coincide with those for the Schrödinger operatorH0 = H |C∞0 (M)
on the complete Riemannian manifold M (see Theorem 1 [15]):

H = −∆ + q(x).(10)

Here the operator ∆ is the Laplace-Beltrami operator on M

∆u =
1

(det(A−1(x)))
1
2
∇
((

det(A−1(x))
) 1

2 A(x)∇u
)
.(11)

We shall show that Theorem 1 generalizes some well-known results giving sufficient
conditions on the essential self-adjointness of the operator (1).

Recently M. Braverman [4] extended the methods of this paper to the case of op-
erators on differential forms and proved the essential self-adjointness of Schrödinger-
type operators on forms of arbitrary degree with Sears-type conditions on the matrix
potential.

2. Proof of Theorem 1

We will use arguments similar to the ones used mainly in the proofs of Theorem
1 in [15] and Theorem 1 in [19].

The following lemma gives us an estimate on the behaviour of an arbitrary
function from the domain D(L∗0) of the adjoint operator L∗0. It is known from the
definition of the operator L∗0 that the domain D(L∗0) consists of those u ∈ L2(Rn)
for which Lu ∈ L2(Rn) (derivatives are taken in the distributional sense). Using
the regularity of the solutions of elliptic operators (see, for example, Addendum 2
of [3]) we can conclude that u belongs to the Sobolev space W 2

2,loc(Rn) consisting

of those u ∈ L2
loc(Rn) such that for all i, j = 1, n ∂u

∂xi
, ∂2u

∂xi∂xj
∈ L2

loc(Rn).

Lemma 2. Let the coefficients of the operator (1) satisfy the conditions (6),(7)
and (8). Then for an arbitrary u ∈ D(L∗0) the following integral converges∫

|gradu|2Q−1(x)dx <∞.(12)

Remarks. The integral (12) is taken over Rn. The vector gradu is the gradient
of the function u on the manifold M , and it can be expressed in local coordinates
(that coincide with the Cartesian coordinates in Rn) by

gradu =
n∑

i,j=1

aij(x)
∂u

∂xi

∂

∂xj
,(13)

so

|gradu|2 =
n∑

i,j=1

aij(x)
∂u

∂xi

∂u

∂xj
= (A∇u(x),∇u(x)) .(14)
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Proof. Locally the integral (12) exists due to the remark before Lemma 2.
Let m ∈M be an arbitrary point. Define the function d(x) = distM (m,x). Due

to the triangle inequality, the function d(x) is Lipschitz on M , but not necessarily
smooth. We will approximate the functions Q−

1
2 and d using the technique of the

paper by M. Gaffney [9] in order to get smooth functions with bounded differentials.
Let j ∈ C∞(R) be a function vanishing outside the interval [−1, 1] such that∫ 1

−1

j(t)dt = 1.

We further define the function ja ∈ C∞(Rn) by the formula ja(x) = 1
an j(x1

a ) · · ·
j(xn

a ) so that ∫
Rn

ja(x)dx = 1.

Define for an arbitrary continuous function h the mollifier operator

(Jah)(x) =
∫

Rn

ja(x− y)h(y)dy.

It is known that Jah ∈ C∞(Rn) and for an arbitrary compact set K0 ⊂ Rn Jah(x)
→ h(x) uniformly on K0 when a→ +0.

We choose a covering of the closed ball B(m,R+2) ⊂M, R > 1 consisting of the
coordinate neighbourhoods Ui of the M -diameter ≤ K−1R−1, where K is from (8),
and let us denote a partition of unity ϕi corresponding to this covering. Moreover,
we eliminate those ϕi such that suppϕi ∩B(m,R+ 1) = ∅, and we choose a small
a0 > 0 such that for all a ≤ a0 the integrand functions of the mollifier operators

J i
ah(x) =

∫
Ui

ja(x− y)ϕi(y)h(y)dy(15)

vanish at the boundaries of Ui. Therefore we can correctly define the operators
J i

a : C(M) → C∞0 (Ui) for all i and for all a ≤ a0.
Define for x ∈ B(m,R + 1) the functions

da,R(x) =
∑

i

(J i
ad)(x),

Q
− 1

2
a,R(x) =

∑
i

(J i
aQ̃

− 1
2

R )(x),

where

Q̃
− 1

2
R (ξ) =

{
Q−

1
2 (ξ) −R−1, if Q−

1
2 (ξ) −R−1 ≥ 0;

0, otherwise.

Using the inequality (8) and the fact that the M -diameter of Ui is ≤ K−1R−1 we
have the inequality

Q−
1
2 (x) − 2R−1 ≤ Q̃

− 1
2

R (ξ) ≤ Q−
1
2 (x)

for all x, ξ ∈ Ui. Using the definition of Q−
1
2

a,R we can derive

(Q−
1
2 (x) − 2R−1)

∑
i

J i
a1(x) ≤ Q

− 1
2

a,R(x) ≤ Q−
1
2 (x)

∑
i

J i
a1(x).(16)
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Due to Lemma 4 from [9] we can show that uniformly for all x ∈ B(m,R+ 1)

lim sup
a→+0

|gradda,R(x)| ≤ 1(17)

and

lim sup
a→+0

|gradQ−
1
2

a,R(x)| ≤ K,(18)

where K is taken from the condition (8).
Due to the operator mollifier property, we can choose a small a ≤ a1 such that

|da,R(x) − d(x)| ≤ 1
2 for all x ∈ B(m,R + 1). Therefore the set Ωa,R = {x ∈

M | da,R(x) < R} has the property B(m,R − 1) ⊂ Ωa,R ⊂ B(m,R + 1) for all
a ≤ a1 with a fixed R > 0. From now on, we will assume that a < min{a0, a1}.

Define on [0,∞) a cut-off function 0 ≤ Φ ≤ 1 which equals one on [0, 1
2 ] and

vanishes outside of [0, 1]. We further define a function

φa,R(x) =

{
Φ
(

da,R(x)
R

)
Q
− 1

2
a,R(x), when x ∈ Ωa,R;

0, otherwise.
(19)

It is clear from (16) and (18) that

φa,R(x) ≤ Q
− 1

2
a,R(x) ≤ Q−

1
2 (x)

∑
i

J i
a1(x)(20)

and

lim sup
a→+0

|gradφa,R(x)| ≤ K1,(21)

where K1 does not depend on R.
We consider the integral

I2
a,R =

∫
Rn

φ2
a,R(x)|gradu(x)|2dx.(22)

Assuming that the function u is real-valued, we have

|φa,Rgradu|2 = φ2
a,R(A∇u,∇u)

= ∇(φ2
a,RuA∇u)− 2φa,Ru(∇φa,R, A∇u)− φ2

a,Ru∇ (A∇u) .
Using (7), (19), (21), the Schwarz inequality, and the fact that

|(∇φa,R, A∇u)| ≤ (A∇φa,R,∇φa,R)
1
2 (A∇u,∇u) 1

2

= |gradφa,R||gradu|
we get the estimate

lim sup
a→+0

I2
a,R ≤ 2K1‖u‖ lim sup

a→+0
Ia,R + lim sup

a→+0

∫
Rn

φ2
a,R(uLu− q(x)u2)dx

≤ 2K1‖u‖ lim sup
a→+0

Ia,R + ‖u‖ · ‖Lu‖+ ‖u‖2.

Therefore we obtain

lim sup
R→∞

lim sup
a→+0

Ia,R <∞.

This last inequality, together with (16) and (19), gives us the estimate (12).
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As in [15], we make the following

Definition. We define the generalized distance between two points x, y ∈M as

ρ(x, y) = inf
`

∫
`

Q−
1
2 d`,

where infimum is taken over all piecewise smooth curves connecting x and y.

We define the function P (x) = ρ(m,x) as the generalized distance between a
fixed point m and an arbitrary point x. It is clear that the function P is Lipschitz
and, due to (9), P (x) →∞ uniformly when distM (m,x) →∞.

The following lemma gives an estimate on the Lipschitz constant for P

Lemma 3. For arbitrary x, y ∈M , we have the inequality

|P (x)− P (y)| ≤ Q−
1
2 (x)distM (x, y) +

K

2
(distM (x, y))2.(23)

Proof. See Lemma 2 [15].

Proof of Theorem 1. We have to show that the operator L∗0 is symmetric.
We define the set Ωt = {x ∈M | P (x) ≤ t}. It is easy to see from the definition

of P , that for an arbitrary t > 0, Ωt is a compact set on M . We choose a covering Ui

of Ωt+2 with M -diameter ≤ 1
2 . We take a partition of unity ψi corresponding to this

covering, and we do not take into consideration those ψi for which suppψi ∩ Ωt+1

= ∅.
Define on Ωt+1 the function P̃a,t =

∑
i J

i
a(P ). We take such a small a ≤ a0 that

for an arbitrary i the integrand in the expression for Pa,t vanishes at the boundary
of Ui and, furthermore, that the inequality |P̃a,t − P | ≤ 1

2 is satisfied.
We denote by Pa,t the function

Pa,t =

{
P̃a,t, when P̃a,t ≤ t;
t, otherwise.

(24)

The function Pa,t is piecewise smooth, and due to (23) and Lemma 4 [9] it satisfies
almost everywhere the inequality

lim sup
a→+0

|gradPa,t(x)| ≤ Q−
1
2 (x).(25)

We estimate the integral Ia,t for arbitrary functions u, v ∈ D(L∗0)

Ia,t =
∫

Rn

(
1− Pa,t

t

)
(u∇A∇v − v∇A∇u)dx

=
1
t

∫
Rn

(uA∇v − vA∇u,∇Pa,t)dx.

We obtain from (25), Lemma 2 and the Lebesque dominated convergence theorem

lim sup
a→+0

Ia,t ≤ lim sup
a→+0

1
t

∫
Rn

(|u| · |gradv|+ |v| · |gradu|) · |gradPa,t|dx

≤ 1
t

∫
Rn

(|u| · |gradv|+ |v| · |gradu|)Q− 1
2 dx

≤ 1
t
‖u‖

(∫
Rn

|gradv|2Q−1dx

) 1
2

+
1
t
‖v‖

(∫
Rn

|gradu|2Q−1dx

) 1
2

≤ c

t
,
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where c is a positive constant not depending on t. Since the integral Ia,m converges
absolutely, then we have

lim
t→∞ lim sup

a→+0
Ia,t = 0,

and this proves the symmetry of operator L∗0 by Fatou’s theorem.

Remark. From the proof of Theorem 1, we can see that the condition (8) was
imposed to prove the estimate (12). Actually we may consider the condition (8)
outside some compact subset in Rn because of the local smoothness of elements
D(L∗0) (see the remark before Lemma 2). The condition (8) is essential for the
essential self-adjointness of the operator (1). We refer the reader to Example 2 of
Appendix to X.1 of [17] where an example was constructed of a one-dimensional
Schrödinger operator that is not self-adjoint with the potential satisfying (9) at
infinity. A potential q satisfying (9) is called classically complete at infinity on M
(see a detailed survey about this in [17], Appendix to X.1).

3. Some corollaries of Theorem 1

In this section, we discuss some results related to the essential self-adjointness
of the operator (1). First of all we give another proof of Theorem 2 [8].

Theorem 4. Let the operator (1) satisfy the following.
There exists a nonnegative function χ(t) ∈ C1([0,∞)) such that∫ ∞

0

χλ−
1
2 = ∞,(26)

χ2(t) ≤ a

[∫ t

0

χλ−
1
2

]2
+ b,(27)

χ2(|x|)q(x) ≥ −c
[∫ |x|

0

χλ−
1
2

]2

− d(28)

+ γ

n∑
i,j=1

ajk(x)
xjxk

|x|2
[
d

dt
χ(|x|)

]2
,

where 1 < γ < ∞ , and a, b, c and d are positive constants, and the function λ is
defined in (2). Then the operator (1) is essentially self-adjoint.

Remark. Theorem 2 [8] gives conditions sufficient for the essential self-adjointness
of the general Schrödinger operators with magnetic potentials. We present here a
variant of Theorem 2 for the operator (1) without a magnetic potential and principal
coefficients which are more smooth. It was shown in [8] that magnetic potentials,
when assumed smooth enough, do not influence the essential self-adjointness of such
operators.

Proof. We will show that conditions (26) and (27) imply completeness of the man-

ifold M . Divide both sides of (27) by
[∫ t

0
χλ−

1
2

]2
and take square roots. We

obtain
χ(t)∫ t

0
χλ−

1
2

≤ a′
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for some sufficiently large t and for some positive constant a′. The last inequality,
when multiplied through by λ−

1
2 (t) and integrated over the interval [t0, T ], leads

to the inequality

ln
∫ T

0

χλ−
1
2 − ln

∫ t0

0

χλ−
1
2 ≤ a′

∫ T

t0

λ−
1
2 .

Hence the condition (3) is satisfied, and M is complete.
Using the condition (26) we can find a sufficiently large constant R0 > 0 such

that b < a
[∫ t

0 χλ
− 1

2

]2
and d < c

[∫ t

0 χλ
− 1

2

]2
, where a, b, c and d are taken from

Theorem 4. Therefore we can replace the inequalities (27) and (28) outside the
closed ball of the radius R0 by the inequalities

χ2(|x|) ≤ 2a

[∫ |x|

0

χλ−
1
2

]2

(29)

and

χ2(|x|)q(x) ≥ −2c

[∫ |x|

0

χλ−
1
2

]2

(30)

+ γ

n∑
i,j=1

ajk(x)
xjxk

|x|2
[
d

dt
χ(|x|)

]2
,

respectively.
Denote the right-hand side of (30) by h(x), and we define a minorant Q for

|x| > R0 using (30) and the remark after the proof of Theorem 1 as follows

Q(x) =


1, if h(x) ≥ χ2(|x|);
2c
[ R |x|

0 χ λ−
1
2

χ(|x|)

]2
, if h(x) < χ2(|x|).

Then we have

Q−
1
2 =

1, if h(x) ≥ χ2(|x|);
(2c)−

1
2

[
χ(|x|)

R |x|
0 χ λ−

1
2

]
, if h(x) < χ2(|x|).(31)

We will prove (8) for Q−
1
2 on the subset H0 = {x |h(x) < χ2(|x|) , |x| > R0}.

Using (29), (30) and the definition of H0, we have the following inequality

|gradχ |2 =
n∑

i,j=1

ajk(x)
xjxk

|x|2
[
d

dt
χ(|x|)

]2

≤ γ−1χ2 + 2cγ−1

[ ∫ |x|

0

χλ−
1
2

]2

≤ 2(a+ c)γ−1

[ ∫ |x|

0

χλ−
1
2

]2

= A2

[ ∫ |x|

0

χλ−
1
2

]2

,
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where A is defined from the relation A2 = 2(a+ c)γ−1. Therefore the gradient of
χ on H0 is estimated by

|gradχ | ≤ A

∫ |x|

0

χλ−
1
2 .

Using the last relation, the definition of λ and (29) we have

|gradQ−
1
2 | =

∣∣∣∣∣grad

(
χ(|x|)∫ |x|

0
χλ−

1
2

) ∣∣∣∣∣ =
∣∣∣∣∣∣∣
gradχ

∫ |x|
0 χλ−

1
2 − χ2 λ−

1
2 grad|x|[ ∫ |x|

0 χλ−
1
2

]2
∣∣∣∣∣∣∣

≤ |gradχ |∫ |x|
0

χλ−
1
2

+
χ2
[
λ−1

∑
j,k ajk(x) xjxk

|x|2
] 1

2[ ∫ |x|
0 χλ−

1
2

]2 ≤ c,

so (8) is fulfilled.
To prove (9), we choose an arbitrary curve Γ going out to infinity on M . We

will use the parameter r, the Euclidean distance from the origin, on the curve Γ.
Using (31) and (29), we have for sufficiently small δ > 0 and for |x| > R0∫

Γ

Q−
1
2 dl ≥

∫
Γ

min

(
1, (2c)−

1
2

χ(|x|)∫ |x|
0 χλ−

1
2

)
dl

≥ δ

∫
Γ

χ(|x|)∫ |x|
0

χλ−
1
2

dl ≥ δ

∫
Γ

χ(|x|)λ− 1
2 (|x|)∫ |x|

0
χλ−

1
2

dr

= δ lim
R→∞

ln

(∫ R

0

χλ−
1
2

)
− δ ln

(∫ R0

0

χλ−
1
2

)
= ∞.

The next theorem is a slight modification of a theorem due to T. Ikebe and T. Kato
[12] (see also [6] and [16] for similar results).

Theorem 5. Let the function λ from (2) satisfy (3). The potential q of the operator
(1) is estimated from below by

q(x) ≥ −(a + b θ(r) )2,(32)

where a, b ∈ R1 are fixed, θ(r) =
∫ r

0
λ−

1
2 . Then the operator (1) is essentially

self-adjoint.

Proof. Using (3), we can define the minorant Q(r) = b2θ2(r) for large r. We have

|gradθ−1|2 = θ−2λ−1
∑
ij

aij
xixj

|x|2 ≤ const,

so the condition (8) is fulfilled. We have an estimate∫
`

Q−
1
2 d` = b−1

∫
`

(∫ r

0

λ−
1
2

)−1

d` ≥ b−1

∫ ∞

0

(∫ r

0

λ−
1
2

)−1

λ−
1
2 (r)dr = ∞,

so the condition (9) is satisfied.

Remark. It was shown in [6], [12] and [16] that the functional inequality (32) can
be replaced by a weaker operator inequality L ≥ −(a + b θ(r) )2.
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Theorems 1 and 4 in [19] give sufficient conditions on the essential self-adjointness
of the operator (1) in cases when the matrix A is either the identity matrix or it is
a diagonal matrix A = p(x)I with a positive smooth function p. The next theorem
gives a generalization of these results for an arbitrary positive matrix A.

Theorem 6. Assume that the condition (6) holds and that the potential q of the
operator (1) satisfies (7) with a new minorant Q for which the condition (8) holds.
We further assume that there exist a smooth function 0 < P → ∞ for |x| → ∞
and a sequence of domains Ωk, Ωk ⊂ Ωk+1 with smooth boundaries Sk = ∂Ωk,

P (x)|Sk
= Nk →∞; P (x) ≤ Nk, x ∈ Ωk,(33)

such that

|gradP (x)| ≤ CkQ
− 1

2 (x), x ∈ Ωk, Ck = o(Nk)(34)

for k → ∞. (The possibility that |gradP (x)| = 0 on a set of positive measure is
not excluded.)

Then the operator (1) is essentially self-adjoint.

Proof. It is enough to prove that the minorant Q satisfies (9). Let us choose
an arbitrary piecewise smooth curve Γ going out to infinity, and we assume that
Γk = Γ ∩ Ωk is nonempty. Due to Sard’s theorem, for almost every t > 0 the
preimage P−1(t) is a regular submanifold in M , and the Riemannian metric on M
in its neighbourhood can be represented by

d`2 =
1

|gradP (x)|2 dt
2 + dσ2,

where dσ2 is an induced metric on the submanifold P−1(t). From this, in particular,
we obtain

|gradP |d` ≥ dt.(35)

From the condition (34), we can derive the inequality

|gradP (x)|−1Q−
1
2 (x) ≥ 1

Ck
, x ∈ Ωk(36)

for a.e. t ∈ [0, Nk]. Using (35) and (36) we have∫
Γk

Q−
1
2 (x)d` =

∫
Γk

|gradP |−1Q−
1
2 |gradP |d`

≥
∫ Nk

t0

1
Ck

dt =
Nk − t0
Ck

→∞.

The next theorem gives sufficient conditions on the essential self-adjointness of
the operator (1) in case when an estimate from below on the potential q is given on
a sequence of disjoint layers going out to infinity. This is a variant of the Hartman-
Ismagilov criterion given in the one-dimensional case for the operator (1) whose
principal coefficient A equals one (see for details [13] and [10]). We will not provide
a proof for this theorem, noting that it can be proved using the scheme of the proof
of Theorem 2 in [19].
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Theorem 7. Let {Ωk}∞k=0, Ωk ⊂ Ωk+1 be a sequence of simply-connected bounded
regions such that

⋃
Ωk = Rn. Let

q(x) ≥ −Cγk, x ∈ Tk = Ω2k+1\Ω2k,(37)

where γk ≥ 1 and C > 0 is independent of k. If
∞∑

k=0

min{h2
k, hkγ

− 1
2

k } = ∞,(38)

where hk = distM (Ω2k, Rn\Ω2k+1) is the minimum M -thickness of Tk, then the
operator (1) is essentially self–adjoint.

Consider the following example given by B. Hellwig [11].

Example. Let

Bu = −
n∑

i=1

∂

∂xi

(
e−|x|

2 ∂u

∂xi

)
+ q(x)u

with
A(x) = e−|x|

2
I,

q(x) ≥ −Const. e|x|
2|x|2 ln2(|x|).

The inverse matrix equals A−1 = e|x|
2
I, so the manifold M =

(
Rn, A−1(x)

)
is

obviously complete. The norm of the gradient of the function

Q−
1
2 (x) =

e−
1
2 |x|2

|x| ln(|x|)
is uniformly bounded with respect to the metric given by A−1, hence the condition
(8) is satisfied. We estimate the integral of Q−

1
2 over an arbitrary piecewise smooth

curve Γ going out to infinity∫
Γ

Q−
1
2 dl ≥

∫ ∞

r0

e−
1
2 r2

r ln r
e

1
2 r2

dr =
∫ ∞

r0

dr

r ln r
= ∞.

Acknowledgements

It is a pleasure to express my gratitude to Professor M. A. Shubin for the for-
mulation of this problem and the attention to my work. The author thanks the
referee for useful remarks.

References

[1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, tensor analysis, and applications.
Addison-Wesley, Reading, Mass., 1983. MR 84h:58001

[2] Yu. M. Berezanskii, Self-adjoint operators in spaces of functions of infinitely many variables.
Translations of mathematical monographs, vol. 63. Amer. Math. Soc., Providence, RI, 1986.
MR 87i:47023

[3] F. A. Berezin and M. A. Shubin, The Schrödinger equation. Kluwer Academic Publishers
Group, Dordrecht, 1991. MR 93i:81001

[4] M. Braverman, On self-adjointness of a Schrödinger operator on differential forms, Proc. Amer.
Math. Soc. 126 (1998), 617–623. CMP 98:03

[5] P. R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J.
Func. Anal. 12 (1973), 401–414. MR 51:6119

[6] P. R. Chernoff, Schrödinger and Dirac operators with singular potentials and hyperbolic equa-
tions, Pacific J. Math. 72 (1977), 361–382. MR 58:23150



900 I. M. OLEINIK

[7] A. A. Chumak, Self-adjointness of the Beltrami-Laplace operator on a complete paracompact
manifold without boundary, Ukrainian Math. J. 25 (1973), 649–655, in Russian.

[8] A. Devinatz, Essential self-adjointness of Schrödinger type operators, Func. Anal. 25 (1977),
58–69. MR 56:884

[9] M. Gaffney, A special Stoke’s theorem for complete Riemannian manifolds, Ann. of Math. 60
(1954), 140–145. MR 15:986d

[10] P. Hartman, The number of L2-solutions of x′′ + q(t)x = 0, Amer. J. Math. 43 (1951),
635–645. MR 13:462a

[11] B. Hellwig, A criterion for self-adjointness of singular elliptic operators, J. Math. Anal. Appl.
26 (1969), 279–291. MR 38:6254

[12] T. Ikebe and T. Kato, Uniqueness of the self-adjoint extension of singular elliptic differential
operators, Arch. Rational Mech. Anal. 9 (1962),77–99. MR 26:461

[13] R. S. Ismagilov, Conditions for self-adjointness of differential operators of higher order, Soviet
Math. Dokl. 3 (1962), 279–283. MR 24:A1443

[14] S. A. Laptev, Closure in the metric of the generized Dirichlet integral, J. Differential Equa-
tions 7 (1971), 727–736. MR 44:2030

[15] I. M. Oleinik, On a connection between classical and quantum mechanical completeness of
the potential at infinity on a complete Riemannian manifold, Mat. Zametki 55 (1994), no. 4,
65–73. MR 95h:35051

[16] Yu. B. Orochko, The hyperbolic equation method in the theory of operators of Schrödinger
type with locally integrable potential, Russian Math Surveys, 43 (1988), no. 2, 51–102. MR
89k:35065

[17] M. Reed and B. Simon, Methods of modern mathematical physics II: Fourier analysis, self-
adjointness. Academic Press, New York, 1975. MR 58:12429b
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