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CLOSURES OF TOTALLY GEODESIC IMMERSIONS
INTO LOCALLY SYMMETRIC SPACES

OF NONCOMPACT TYPE

TRACY L. PAYNE

(Communicated by Christopher Croke)

Abstract. It is established that ifM1 andM2 are connected locally symmet-
ric spaces of noncompact type whereM2 has finite volume, and φ :M1 →M2

is a totally geodesic immersion, then the closure of φ(M1) in M2 is an im-
mersed “algebraic” submanifold. It is also shown that if in addition, the real
ranks of M1 and M2 are equal, then the the closure of φ(M1) in M2 is a
totally geodesic submanifold ofM2. The proof is a straightforward application
of Ratner’s Theorem combined with the structure theory of symmetric spaces.

1. Introduction

In this paper, we consider totally geodesic maps and totally geodesic submani-
folds. Let D and M be Riemannian manifolds. An immersion φ from D to M is
called totally geodesic if for every geodesic γ in D, its image φ ◦ γ is a geodesic in
M. A submanifold N of a Riemannian manifold M is called totally geodesic if the
inclusion map i : N →M is a totally geodesic map.

Let M2 be a locally symmetric space of noncompact type, and let G2 be the
connected component of the identity in the isometry group of its universal cover
M̃2. We let G2 act on M2 from the right. Let p : M̃2 →M2 be the covering map.

We will prove

Theorem 1.1. Let M2 be a connected locally symmetric space of noncompact type
with finite volume. Let M1 be a connected locally symmetric space of noncompact
type. Let φ be a totally geodesic immersion of M1 into M2. Then the closure in
M2 of the set φ(M1) is an immersed submanifold of M2 of the form p(x̃H), where
x̃ is a point in M̃2 and x̃H is the orbit of x̃ under a subgroup H of G2. If in
addition, the rank of M1 is equal to the rank of M2, then the closure of φ(M1) is
a totally geodesic submanifold of M2.

Furthermore, a result due to N. Shah [9], describes the algebraic structure of
the subgroup H : if M2 is either rank one or compact, then H must be a reductive
group with compact center.

In [10], A. Zeghib demonstrated that in a compact manifold with variable nega-
tive curvature, every immersed geodesic hypersurface of dimension two or more is
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compact, and that there are but a finite number of these objects. In the paper [8],
N. Shah proved Theorem 1.1 in the case that M2 is a compact manifold of dimen-
sion n > 2 with constant negative curvature and M1 is equal to (n−1)-dimensional
hyperbolic space Hn. Shah has informed the author that he also knew proofs for
the finite volume and higher codimension cases. After the announcement of M.
Ratner’s powerful results describing the closures of unipotent orbits in quotients of
Lie groups, Shah observed that his theorem followed from Ratner’s Theorem and
that the compactness hypothesis could be weakened to finite volume [2].

1.1. Acknowledgments. I would like to thank M. Ratner and R. Spatzier for
their valuable suggestions and remarks. Special thanks are due to Nimish Shah,
who showed how to simultaneously simplify the proof of the theorem and to drop
a compactness hypothesis on M2 in the conclusion about totally geodesic subman-
ifolds.

1.2. Notation and terminology. We will use capital letters G, H, etc. to denote
Lie groups, and we will denote the corresponding Lie algebras by the corresponding
gothic letters g, h, etc. If h is a subalgebra of the Lie algebra g, H will denote the
connected subgroup of G corresponding to h. For an element g of G, we will use
cg to denote conjugation by g. The terms “Cartan subalgebra” and “rank” will
always mean an R-split Cartan subalgebra and real rank.

2. Ratner’s Theorem

Let G be a second countable real Lie group. Suppose Γ is a lattice in G. The
group G acts on the quotient G/Γ. A subset A of G/Γ is called homogeneous if
there is a closed subgroup H of G and a point x in G/Γ such that A is the orbit
Hx of H through x and H ∩ gΓg−1 is a lattice in H, where gx ∈ A.

For g in G, let Adg : g → g denote the adjoint map of g defined by Adg(X) =
dcg(X) for X in g. Let ad : g → End(g) denote the differential of Ad : G → GL(g).
An element u of G is called unipotent if Adu−I is nilpotent. A subgroup of G is
unipotent if all its elements are unipotent.

Let U be a unipotent subgroup of G. In a series of articles [3], [4], [5], [6],
M. Ratner has completely analyzed the closures of orbits Ux of unipotent subgroups
and classified the ergodic U -invariant Borel probability measures on G/Γ. See [7]
for a survey. We will use the following very powerful theorem of M. Ratner on orbit
closures of orbits of unipotent groups.

Theorem 2.1 (M. Ratner [6]). Let G be a connected Lie group and U a connected
subgroup of G generated by unipotent elements of G. Then, for any lattice Γ in G
and any x in G/Γ, the closure of the orbit Ux in G/Γ is homogeneous.

An element of X of g is called diagonal for a nilpotent element Y of g if there
is a nilpotent element Y ∗ ∈ g such that ad(Y ∗)(Y ) = X , ad(X)(Y ) = −2Y and
ad(X)(Y ∗) = 2Y ∗. The elements Y and Y ∗ generate a subalgebra of g isomor-
phic to sl(2,R) so that X is mapped to diag(1,−1). The one-parameter subgroup
A = {exp(tX) | t ∈ R} of G is called diagonal for the one-parameter unipotent
subgroup U = {exp(tY ) | t ∈ R} of G. Given A diagonal for U , we will denote by
SL2(U, A) the subgroup generated by A = {exp tX}t∈R, U = {exp tY }t∈R and
U∗ = {exp tY ∗}t∈R.
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The next lemma follows from Proposition 2.1 in [5]. It will be used in the part
of the proof of Theorem 1.1 that shows that the submanifold is totally geodesic in
certain cases.

Proposition 2.2 (M. Ratner). Let G be a connected Lie group and U a connected
subgroup generated by unipotent elements of G. Let A1, . . . , An be diagonal for
some one-parameter subgroups U1, . . . , Un of U . Let L be the subgroup generated
by U and A1, . . . , An, and let L′ be the subgroup generated by U and SL2(Ui, Ai).
Then Lx = L′x for all x ∈ G/Γ.

3. Globally symmetric spaces

and their totally geodesic submanifolds

Let M be a globally symmetric space of noncompact type, and let G be the
connected component of the identity in its isometry group. Fix a point p inM. Then
M can be identified with the homogeneous space K\G, where K is the stabilizer in
G of the point p. The group G is a semisimple Lie group of noncompact type, and K
is a maximal compact subgroup of G. The point p induces a Cartan decomposition
g = k + p of g and a corresponding Cartan involution. We can then identify TpM
with p.

Using this set-up, the next theorem from [1] gives an algebraic description of
totally geodesic submanifolds.

Theorem 3.1. Suppose that N is a totally geodesic submanifold of M which con-
tains the point p.

Then N is a globally symmetric space. Let p∗ be the subspace of p which is
identified with TpN under the identification of TpN and p. Let k∗ = [p∗, p∗] and let
g∗ = k∗+ p∗. Let G∗ and K∗ be the corresponding subgroups of G. The submanifold
N has the structure of G∗/K∗ and the corresponding Cartan decomposition relative
to the point p is g∗ = k∗ + p∗, with the Cartan involution for g∗ equal to the
restriction of the Cartan involution for g to g∗.

Conversely, if g∗ is a subalgebra of g which is invariant under the Cartan in-
volution for g, then it gives rise to a totally geodesic submanifold N of M. Let
p∗ = g∗ ∩ p. Then

N = {exp(X)K |X ∈ p∗}
is a totally geodesic submanifold of M.

4. Proof of Theorem 1.1

First, note that we may assume that M1 is simply connected. If it is not, let
ρ1 be a locally isometric covering map of M1 by its universal cover M̃1. Then the
map φ ◦ ρ1 is a totally geodesic immersion of M̃1 into M2 so that the closure of
(φ ◦ ρ1)(M̃1) is equal to the closure of φ(M1).

Now, we find algebraic descriptions of M1 and M2 that are compatible through
the map φ. Let ρ be a locally isometric covering map of M2 by its universal cover
M̃2. The map φ lifts to a one-to-one map φ̃ : M1 → M̃2 such that ρ ◦ φ̃ = φ. Note
that φ̃ is also a totally geodesic isometric immersion, and the submanifold φ̃(M1) is
a totally geodesic submanifold of M̃2. Let x̃ be a point in φ̃(M1) and let x = ρ(x̃).

Since the map φ is totally geodesic, the geodesic symmetries are preserved under
φ. Since the geodesic symmetries determine the algebraic structure of G1 and G2, we
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may assume, by rescaling the metric on irreducible components of M1 if necessary,
that the map φ is a local isometry.

Let G2 denote the connected component of the identity in the isometry group
of M̃2. The globally symmetric space M̃2 has the structure of K2\G2, where K2

is the stabilizer of the point x̃ in G2. The manifold M2 then has the structure of
K2\G2/Γ, where Γ is the group of deck transformations for the covering map ρ. Let
p denote the covering map p : G2/Γ → K2\G2/Γ. Let g2 = k2 + p2 be the Cartan
decomposition of g2 induced by x̃ and let θ be the corresponding Cartan involution.

By Theorem 3.1, the submanifold φ̃(M1) is globally symmetric. Let G1 be the
subgroup of G2 that is the connected component of the identity in the isometry
group of φ̃(M1). Then φ̃(M1) is the orbit x̃G1.

Let x̂ be the identity coset of G2/Γ, so that p(x̂) = x and φ(M1) = p(G1x̂).
If G is a connected semisimple Lie group of noncompact type, then a semisimple
subgroup of G without compact factors is generated by unipotent elements of G, so
G1 is generated by unipotent elements. Then by Ratner’s Theorem 2.1, the closure
of the orbit G1x̂ in G2/Γ is homogeneous. There is a closed subgroup H of G2 such
that the closure of G1x̂ equals the orbit Hx̂ and H ∩ Γ is a lattice in H.

The projection p(Hx̂) of the homogeneous set Hx̂ equals φ(M1). Since the kernel
of p is compact, if A is a set contained in G/Γ, then p(A) = p(A). Thus,

φ(M1) = p(G1x̂) = p(G1x̂) = p(Hx̂).

Since Γ ∩H is a lattice in H and Γ has no torsion, the set Hx̂ is a submanifold
of G2/Γ with the structure of H/Γ ∩ H. Then the set p(Hx̂) is a submanifold of
M2 with the structure of K2 ∩H\H/Γ ∩H.

Now we would like to show that if the ranks of M1 and M2 are equal, then the
subset p(Hx̂) of M2 is a totally geodesic submanifold.

Let a be a Cartan subalgebra for g1 contained in p1. Since the ranks of M1 and
M2 are equal, a is a Cartan subalgebra for g2. Let

g2 = g2
0 +

∑
β∈Λ2

gβ

be the corresponding root space decomposition. Because g1 < h, we know that
a < h. The Cartan decomposition for g2 restricts to a Cartan decomposition for h :

h = h0 ⊕
∑
α∈Λ

hα.

Note that for all α ∈ Λ, the root space hα is contained in a root space gβ for some
β in Λ2.

The subalgebra k2 of g2 is pointwise fixed under θ and all one-dimensional sub-
spaces of a are fixed under θ, and hence any subspace of k2 ⊕ a is preserved under
θ. Since h0 is contained in g0

2 = (k2 ∩ g0
2)⊕ a, h0 is invariant under θ.

Now suppose that bα is a one-dimensional subspace of hα for some α ∈ Λ.
The subalgebra slα of g2 spanned by the one-dimensional subspaces bα, θ(bα) and
[bα, θ(bα)] is isomorphic to sl(2,R), and [bα, θ(bα)] < a. Since bα ⊕ [bα, θ(bα)] <
h, by Proposition 2.2, slα < h. Letting α vary over Λ, we see that

∑
α∈Λ hα is

invariant under θ. Already knowing that h0 is invariant under θ, we conclude that
h is invariant under θ.
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By Theorem 3.1, the orbit Hx̂ in G2/Γ projects to a totally geodesic submanifold
of K2\G2/Γ. Thus, φ(M1) = p(Hx̂) is a totally geodesic submanifold of M2,
concluding the proof of Theorem 1.1.

5. Examples

The simplest example of the situation described in Theorem 1.1 is the case when
the image of the totally geodesic immersion is closed.

Example 5.1. Let M2 be a locally symmetric space of noncompact type with
finite volume, and let M1 be a closed totally geodesic submanifold of M2. Let
ρ : M̃1 →M1 be the locally isometric covering map of M1 by its universal cover.
Let i : M1 →M2 be the inclusion map. Then the map φ = i◦ρ is totally geodesic.
The closure of φ(M̃1) in M2 is M1.

It more often happens that the image of the totally geodesic immersion is not
closed, as in the example below.

Example 5.2. Let M1,M2 and φ be as in Example 5.1. Let γ be a geodesic in
M1 which is dense in M1, and let γ̃ be the geodesic in M̃1 that covers γ. Let
M3 be any totally geodesic submanifold of M̃1 such that γ̃ is contained in M3.
The restriction of φ to M3 is a totally geodesic immersion from M3 to M2. The
geodesic γ is in its image. Then since

M1 = (γ) ⊂ φ|M3(M3) ⊂M1,

the closure of φ|M3(M3) in M2 is equal to M1.
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