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A NEW CHARACTERIZATION OF Proj1 X = 0
FOR COUNTABLE SPECTRA OF (LB)-SPACES

JOCHEN WENGENROTH

(Communicated by Dale Alspach)

Abstract. The derived projective limit functor Proj1 is a very useful tool for
investigating surjectivity problems in various parts of analysis (e.g. solvability
of partial differential equations).

We provide a new characterization for vanishing Proj1 on projective spec-
tra of (LB)-spaces which improves a classical result of V. P. Palamodov and
V. S. Retakh.

1. Introduction

In 1968, V. P. Palamodov [7], [8] developed the theory of the projective limit
functor in the categories of vector spaces and locally convex spaces and introduced
the derived projective limit functor Proj1 as a tool for investigating surjectivity
problems in various parts of analysis (like e.g. solvability of partial differential
equations). Due to recent progress [5], [6], [11], [12], [14] this theory could be
successfully applied by Braun, Meise and Vogt [3], [4] to characterize surjectivity
of partial differential and convolution operators on various classes of functions and
distributions, by Vogt [10] and Frerick and the author [6] to the splitting theory
for Fréchet spaces, or by Bonet and Domański [1] to investigate real analytic vector
valued functions and parameter dependent partial differential equations.

By a projective spectrum X = (Xn, %n
m) we always mean a sequence (Xn)n∈N of

linear spaces (over the same field of real or complex numbers) and linear spectral
maps %n

m : Xm → Xn, n ≤ m, satisfying

%n
m ◦ %m

k = %n
k and %n

n = idXn for n ≤ m ≤ k.

The projective limit is defined as

ProjX =
{

(xn)n∈N ∈
∏
n∈N

Xn : %n
m(xm) = xn for all n ≤ m

}
,

and %n : ProjX → Xn denotes the canonical projection onto the nth component. A
morphism f : X → Y between to projective spectra X = (Xn, %n

m) and Y = (Yn, τn
m)
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is a sequence of linear maps fn : Xn → Yn which commute with the spectral maps,
i.e. τn

m ◦ fm = fn ◦ %n
m for n ≤ m.

Proj may be considered as a functor acting from the category of projective spec-
tra into the category of linear spaces (a morphism f : X → Y as above is trans-
formed into the linear map ProjX → ProjY, (xn)n 7→ (fn(xn))n), and then the
first derived functor Proj1 can be constructed within homological algebra. Roughly
speaking, Proj1 measures the lack of exactness of the functor Proj, in particular,
Proj1X = 0 for a spectrum X means that for all exact sequences

0 → X → Y → Z → 0

of projective spectra the induced sequence

0 → ProjX → ProjY → ProjZ → 0

is again exact, i.e. the last map ProjY → ProjZ is surjective.
Instead of following the homological approach, one can take a concrete represen-

tation of Proj1 obtained by Palamodov [7] as the definition (cf. [11], [12]). For a
spectrum X = (Xn, %n

m) we define

Proj1X =
∏
n∈N

Xn

/
Im Ψ, where Ψ :

∏
n∈N

Xn →
∏
n∈N

Xn,

(xn)n∈N 7→ (xn − %n
n+1xn+1)n∈N.

This definition is convenient for calculations, in particular, it is not too hard to
compute that Proj1X = 0 if Proj1X̃ = 0 for some “subspectrum” X̃ = (Xnk

, %nk
nm

),
where (nk)k is a strictly increasing sequence of natural numbers.

In applications in analysis the spaces Xn usually carry some natural topology and
the spectral maps are continuous. It turned out, that linear topological properties
of the spaces are useful to characterize Proj1 = 0. The important case of spectra
consisting of spaces endowed with a Fréchet space topology has been considered
by Palamodov [8, Corollary 5.1], who proved by using an abstract Mittag-Leffler
procedure, that if X = (Xn, %n

m) is a spectrum of Fréchet spaces with continuous
spectral maps, then Proj1X = 0 if

∀ n ∈ N ∃ m > n ∀ k > m %n
m(Xm) ⊆ %n

k (Xk),

the closure taken in the topology of Xn. For the (often even more important) dual
case of spectra consisting of (LB)-spaces (i.e. countable inductive limits of Banach
spaces), Palamodov [8, Theorem 5.4] and Retakh [9] (see also [11], [12]) obtained the
following characterization, where we call an absolutely convex subset B of a vector
space a Banach ball if its linear span [B] endowed with the Minkowski functional
as a norm is a Banach space.

Theorem 1. Let X = (Xn, %n
m)n∈N be a projective spectrum of separated (LB)-

spaces Xn and continuous linear maps %n
m. The following conditions are equivalent.

1. Proj1 X = 0.
2. For every n ∈ N there exist a bounded Banach ball Bn ⊆ Xn and an m > n

such that

(α) %n
n+1(Bn+1) ⊆ Bn and

(β) %n
m(Xm) ⊆ %n

k (Xk) + Bn for all k > m.
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3. For every n ∈ N there exist a bounded Banach ball Bn ⊆ Xn and an m > n
such that

(α) %n
n+1(Bn+1) ⊆ Bn and

(β̃) %n
m(Xm) ⊆ %n(ProjX ) + Bn.

There seems to be some mystery around this theorem which is perhaps due
to the definition of Proj1 in terms of homological algebra. However, the original
proof of Retakh (necessity of 2. and 3.) and Palamodov (sufficiency of 2. and 3.)
does not use any homological tool. The proof of 2. ⇒ 1. can be reduced to the
result on Fréchet spaces mentioned above: endow Xn with the topology induced
by the Minkowski functional of Bn (this is, in general, only a complete metrizable
group topology, but this is enough), then (α) means that the spectral maps remain
continuous and (β) is the required density. The proof of 1. ⇒ 3. uses a Baire
category argument and an open mapping lemma for complete metrizable groups.
We recommend the reader to consult the (English translations of the) original
articles of Palamodov and Retakh.

As necessary conditions; 2. and 3. are extremely useful, and almost all topo-
logical properties of limits of projective spectra with Proj1 = 0 are proved via
these conditions, e.g. Vogt [11, Theorem 5.7] showed that the projective limit of
a spectrum X of (LB)-spaces with Proj1X = 0 is an ultrabornological (hence also
barrelled) locally convex space if it is endowed with the relative topology of the
product. This result allows us to apply open mapping theorems to show that the
product topology coincides with some natural inductive topology on the projective
limit (see e.g. [1, Theorems 1 and 31]).

On the other hand, if 2. and 3. are used to check Proj1 = 0 to obtain surjectivity
results, condition (α) causes very difficult problems, whereas (β) gives appropriate
conditions for the concrete situation.

For projective spectra of Montel (LB)-spaces where the spectral maps have dense
range, it could be shown in [14], that the theorem remains true if condition (α) in
2. and 3. is just dropped. This result is quite satisfactory for applications in dis-
tribution theory, where the requirement of Montel steps is almost always satisfied.
In other applications, e.g. to the splitting theory for Fréchet spaces, the spaces of
the spectrum are never Montel (except in trivial cases). In [6], Frerick and the
author gave a sufficient condition for Proj1 = 0 like 2. where (α) is dropped but
(β) becomes stronger so that this new condition is no longer a characterization. In
the present article we show that at least for the equivalence of 1. and 3. condition
(α) is superfluous.

2. The new characterization

Theorem 2. Let X = (Xn, %n
m) be a projective spectrum of separated (LB)-spaces

Xn and continuous linear maps %n
m. Then Proj1X = 0 if and only if for every

n ∈ N there exist a bounded Banach ball Dn ⊆ Xn and an m = mn ≥ n with

%n
m(Xm) ⊆ %n(ProjX ) + Dn.

We remark that the assumption X consisting of (LB)-spaces is just a conve-
nient way to describe the algebraic properties of the “steps” Xn which are needed,
i.e. each step is covered by an increasing sequence of Banach balls which are
mapped by the linking maps into subsets of some multiple of one of the balls
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covering the range space. In particular, the theorem applies if the spaces Xn are
Mackey-complete (DF)-spaces (especially, strong duals of not necessarily distin-
guished Fréchet spaces) and the spectral maps are continuous (just apply the the-
orem as stated to the associated bornological topologies).

We first collect some (more or less known) facts about Banach balls. The second
statement below can be interpreted as an open mapping lemma (“almost open
continuous linear operators between Banach spaces are open”).

Lemma. Let X and Y be vector spaces, f : X → Y a linear map and A ⊆ X,
B, D ⊆ Y be Banach balls.

1. If f(A) + B does not contain subspaces (other than {0}), then f(A) + B and
f−1(B) ∩A are again Banach balls.

2. If B ⊆ D + 1
2B and B + D does not contain subspaces, then B ⊆ 3D.

Proof. This lemma appeared in [6, Lemma 2.4 and proof of 2.5] (with a different
proof of 1.), but we give the arguments here for the sake of completeness. The first
statement is obtained by considering

0 → [A ∩ f−1(B)]
j→ [A]× [B]

q→ [f(A) + B] → 0,(?)

where j(x) = (x,−f(x)) and q(x, y) = f(x) + y, and [C] is always equipped with
the Minkowski functional pC . (?) is algebraically exact and j and q are continuous.
Since [A] × [B] is Banach and [f(A) + B] is separated, (?) is even topologically
exact, which gives the conclusion. (This “structural proof” was kindly provided by
S. Dierolf.)

To prove the second part, let x ∈ B ⊆ D + 1
2B. There are y0 ∈ D and x0 ∈ B

with x = y0 + 1
2x0. Inductively, we find sequences (xn)n ∈ DN0 and (yn)n ∈ BN0

such that x =
n∑

l=0

1
2l yl+ 1

2n+1 xn. For every n we have
n∑

l=0

1
2l yl ∈ 2D and this sequence

is Cauchy in ([D], pD); hence, convergent to some y ∈ 2D
[D] ⊆ 3D. Finally, we get

x =
n∑

l=0

1
2l yl + 1

2n+1 xn → y in the separated space ([B + D], pB+D) which implies

x = y ∈ 3D.

Proof of Theorem 2. The only if part is immediate by Theorem 1. Since it is enough
to show Proj1 X̃ = 0 for the spectrum X̃ = (Xrn , %rn

rk
) , where r1 = 1 and rn+1 =

mrn , which is a “subsequence” of the given spectrum, and since this new spectrum
again satisfies the hypothesis of the theorem, we may assume mn = n + 1.
Let Xn =

⋃
l∈N Bn,l, where (Bn,l)l is an increasing sequence of bounded Banach

balls. By assumption, we have

%1
2(X2) ⊆ %1(ProjX ) + D1 =

⋃
l∈N

%1
[(

%3
)−1(B3,l)

]
+ D1.

Y = ([%1
2(D2)], p%1

2(D2)) is a Banach space with Y ⊆ %1
2(X2), and Baire’s category

theorem implies that there is l3 ∈ N such that

Y ∩
{

%1
[(

%3
)−1

(B3,l3)
]

+ D1

}
is not meager (of second category) in Y . Since this set equals⋃

l∈N

(
Y ∩

{
%1

[(
%3

)−1(B3,l3) ∩
(
%4

)−1(B4,l)
]

+ D1

})
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there is l4 ∈ N such that

Y ∩
{
%1

[(
%3

)−1(B3,l3) ∩
(
%4

)−1(B4,l4)
]

+ D1

}
is not meager in Y . Inductively we find a sequence (lm)m≥3 of natural numbers
such that for each m ≥ 3

Y ∩
{
%1

[ m⋂
j=3

(
%j

)−1(Bj,lj )
]

+ D1

}
is not meager, which therefore also holds for the bigger set

Y ∩
{

%1
m

[ m⋂
j=3

(
%j

m

)−1
(Bj,lj )

]
+ D1

}
.

Define A1
m :=

⋂m
j=3

(
%j

m

)−1(Bj,lj ) which is a Banach ball by the first part of the
lemma (and it is clearly bounded in Xm, recall that %m

m is the identity on Xm). For
m ≥ 3 we obviously have %m

m+1(A
1
m+1) ⊆ A1

m. Since the set

Y ∩
(
%1

m(A1
m) + D1

)
is not meager in Y , its closure contains an interior point which can be assumed to
be 0 (by a simple convexity argument). Hence, for each m ≥ 3, there is εm ∈ (0, 1)
such that

εm%1
2(D2) ⊆ Y ∩

(
%1

m(A1
m) + D1

)Y

⊆
(
%1

m(A1
m) + D1

)
+

εm

2
%1
2(D2).

Since εm%1
2(D2) and %1

m(A1
m)+D1 are Banach balls such that their sum is bounded

in the separated space X1, the second part of the lemma implies
εm

3
%1
2(D2) ⊆ %1

m(A1
m) + D1 and therefore even,

ε1
mD2 ⊆ %2

m(A1
m) +

(
%1
2

)−1(D1),

with ε1
m := εm

3 for m ≥ 3. If we proceed in the same way with Dk instead of D1,
we find bounded Banach balls Ak

m ⊆ Xm and εk
m ∈ (0, 1), m ≥ k + 2, such that

(α) εk
mDk+1 ⊆ %k+1

m (Ak
m) +

(
%k

k+1

)−1(Dk) and

(β) %m
m+1(A

k
m+1) ⊆ Ak

m for m ≥ k + 2.

Replacing Ak
m by A1

m + · · ·+ Ak
m if necessary, we may assume

(γ) Ak−1
m ⊆ Ak

m for m ≥ k + 2.

Now we define D̃1 := D1, D̃2 :=
(
%1
2

)−1(D1) ∩
[
D2 + %2

3(A
1
3)

]
and, inductively,

D̃r+1 :=
(
%r

r+1

)−1(D̃r) ∩
[
Dr+1 + %r+1

r+2(A
r
r+2)

]
.

Again the first part of our lemma implies that every D̃r ⊆ Xr is a Banach ball and
we obviously have %r

r+1(D̃r+1) ⊆ D̃r. Proceeding by induction (on r) we will show
that for each r ≥ 2 and every m ≥ r + 1 there is δr

m ∈ (0, 1) with

δr
mDr ⊆ D̃r + %r

m(Ar−1
m ).(?)

r = 2 : Let m ≥ 3 and define δ2
m = ε1

m ∈ (0, 1). By (α) we have

ε1
mD2 ⊆ %2

m(A1
m) +

(
%1
2

)−1
(D1),
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and since ε1
m < 1, this yields

δ2
mD2 ⊆ %2

m(A1
m) +

[(
%1
2

)−1(D1) ∩
(
D2 + %2

m(A1
m)

)]
⊆ %2

m(A1
m) +

[(
%1
2

)−1(D1) ∩
(
D2 + %2

3(A
1
3)

)]
= %2

m(A1
m) + D̃2.

r → r + 1: Assume that (?) holds for some r ≥ 2 and let m ≥ r + 2. Define
δr+1
m = 1

2εr
mδr

m ∈ (0, 1). Using (α) and then the induction hypothesis, we get

δr+1
m Dr+1 ⊆ 1

2
δr
m%r+1

m (Ar
m) +

1
2
(
%r

r+1

)−1(δr
mDr)

⊆ 1
2
%r+1

m (Ar
m) +

1
2
(
%r

r+1

)−1(
D̃r + %r

m(Ar−1
m )

)
.

For x ∈ (
%r

r+1

)−1(
D̃r + %r

m(Ar−1
m )

)
there are y ∈ D̃r and z ∈ Ar−1

m with %r
r+1(x) =

y + %r
m(z). Hence, %r

r+1

(
x + %r+1

m (z)
)

= y, which implies

x ∈ (
%r

r+1

)−1(D̃r) + %r+1
m (Ar−1

m ).

We therefore get

δr+1
m Dr+1 ⊆ 1

2
%r+1

m (Ar
m) +

1
2
(
%r

r+1

)−1(D̃r) +
1
2
%r+1

m (Ar−1
m )

⊆ %r+1
m (Ar

m) +
(
%r

r+1

)−1(D̃r)

by (γ). This implies

δr+1
m Dr+1 ⊆ %r+1

m (Ar
m) +

[(
%r

r+1

)−1(D̃r) ∩
(
Dr+1 + %r+1

m (Ar
m)

)]
⊆ %r+1

m (Ar
m) +

[(
%r

r+1

)−1(D̃r) ∩
(
Dr+1 + %r+1

r+2(A
r
r+2)

)]
= %r+1

m (Ar
m) + D̃r+1.

This completes the induction step. To finish the proof, we will show that the
sequence (D̃r)r satisfies Retakh’s condition for Proj1X = 0 (2. in Theorem 1), i.e.

%r
r+1(Xr+1) ⊆ %r

m(Xm) + D̃r for all m ≥ r + 2.

Fix r ∈ N and m ≥ r + 2. We know

%r
r+1(Xr+1) ⊆ %r(ProjX ) + Dr ⊆ %r

m(Xm) + Dr.

Multiplying with δr
m we get

%r
r+1(Xr+1) ⊆ %r

m(Xm) + δr
mDr.

Using (?) we conclude

%r
r+1(Xr+1) ⊆ %r

m(Xm) + D̃r + %r
m(Ar−1

m ) = %r
m(Xm) + D̃r.

As we have noted above, %r
r+1(D̃r+1) ⊆ D̃r and each D̃r is a bounded Banach ball.

Thus, Retakh’s and Palamodov’s theorem implies the assertion.
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Remark. We do not know whether the existence of a sequence of Banach balls Dn

satisfying only

(β) ∀ n ∈ N ∃ m > n ∀ k > m %n
m(Xm) ⊆ %n

k (Xk) + Dn

already implies Proj1X = 0. If the sequence Dn satisfies condition (α) of Theo-
rem 1, one can endow Xn with the complete metrizable topology induced by the
Minkowski functional of Dn and the Mittag-Leffler procedure (see e.g. [2, chap. 2,
§3, théorème 1]) applies (because the spectral maps remain continuous) to get the
hypothesis of Theorem 2. Condition (α) is essentially equivalent to the continuity
of the spectral maps with respect to the new topologies, thus, if (α) is violated,
there is no direct way to apply the Mittag-Leffler argument.

The above result and classical duality theory now provide a new characterization
of weakly acyclic (LF)-spaces. We recall that an (LF)-space E = indnEn (i.e. E
is the union of the increasing sequence of Fréchet spaces (En)n with continuous
inclusions En ↪→ En+1, endowed with the strongest locally convex topology such
that all inclusions En ↪→ E are continuous) is called weakly acyclic, if the projective
spectrum of the duals with restrictions as spectral maps satisfies Proj1 = 0 (by [13,
Lemma 4.1] this is equivalent to the original definition of Palamodov [8, §6], for
more information see also [13], [14]). The equivalence of 1., 2. and 3. below is again
due to Palamodov and Retakh.

Theorem 3. Let E = indn En be an (LF)-space. The following conditions are
equivalent.

1. E is weakly acyclic.
2. For every n there exist an absolutely convex 0-neighbourhood Un ⊆ En and

an m > n such that

(α) Un ⊆ Un+1 and
(β) σ(Em, E′

m)|Un = σ(Ek, E′
k)|Un for all k > m.

3. For every n there exist an absolutely convex 0-neighbourhood Un ⊆ En and
an m > n such that

(α) Un ⊆ Un+1 and

(β̃) σ(Em, E′
m)|Un = σ(E, E′)|Un .

4. For every n there exist an absolutely convex 0-neighbourhood Un ⊆ En and
an m > n such that

(β̃) σ(Em, E′
m)|Un = σ(E, E′)|Un .

Proof. The theorem follows immediately from Theorem 2 by the following obser-

vation: Let X
i

↪→ Y
j

↪→ Z be locally convex spaces with continuous inclusions, let
h = j ◦ i and U be an absolutely convex 0-neighbourhood in X . Then

σ(Y, Y ′)|U = σ(Z, Z ′)|U if and only if it(Y ′) ⊆ ht(Z ′) + U◦

(the polar taken in X ′). This can be proved by standard duality arguments using
the theorem of bipolars.
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