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Abstract. We show that if g is a finite dimensional real Lie algebra, then g

has cohomological dimension cd(g) = dim(g)−1 if and only if g is a unimodular
extension of the two-dimensional non-Abelian Lie algebra aff.

1. Introduction

Throughout this paper, g denotes a finite dimensional real Lie algebra. The
cohomological dimension of g is the largest integer cd(g) such that Hcd(g)(g, R) 6= 0,
where H∗(g, R) denotes the cohomology of g with trivial coefficients. It is well
known that cd(g) = dim(g) if and only if g is unimodular [1]; that is, if the adjoint
map ad(x) : y 7→ [x, y] has zero trace for all x ∈ g. So in the space of Lie algebras
of any given dimension, the subset of Lie algebras with cd(g) < dim(g) constitutes
a large open set. For example, in dimension 3 there are infinitely many non-
isomorphic real Lie algebras, but only 6 isomorphism classes having cd(g) = dim(g)
(see [2]). Interestingly, the algebras with cd(g) = dim(g) − 1 are also quite rare.
The simplest Lie algebra with cd(aff) = dim(g) − 1 is the 2-dimensional affine Lie
algebra aff = 〈x, y : [x, y] = y〉.
Definition. An extension a ↪→ g � b, of a Lie algebra b by a Lie algebra a, is said
to be unimodular if ad(x)|a has zero trace for all x ∈ g.

Theorem 1.1. cd(g) = dim(g) − 1 if and only if g is a unimodular extension of
aff.

It follows from Theorem 1.1 that the only Lie algebra of dimension 3 with cd(g) =
dim(g)− 1 is R⊕ aff. In the classification of 3-dimensional Lie algebras, R⊕ aff is
the algebra with χ = ∞, where χ is the Tasaki-Umehara invariant [3].

The paper is organized as follows. In Section 2 we establish some duality results
which we require in the proof of Theorem 1.1. In Section 3 we give some elementary
results for unimodular extensions. Theorem 1.1 is then proved in Section 4. The
paper finishes with some remarks, in Section 5.

Let us introduce some notation and basic definitions. For convenience, we write
dim(g) = n. When there is no risk of confusion, we will use the notation Λi to
denote the i-th exterior product Λig∗ of the dual space g∗. We denote

⊕n
i=0 Λi by

Λ. Recall that a linear map φ : Λ → Λ is a derivation of degree k if φ(α ∧ β) =
(φα) ∧ β + (−1)k.iα ∧ (φβ), for all α ∈ Λi, β ∈ Λ. The differential d in Λ is
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the derivation of degree 1 whose restriction to Λ1 is the dual of the Lie product
[ , ] : Λ2g → Λ1g. The cohomology H∗(Λ, R) of g is the cohomology of d. The
canonical 1–form γ ∈ Λ1 is defined by γ(x) = tr

(
ad(x)

)
for all x ∈ g.

2. Twisted duality

Let D : Λ → Λ be defined by D(α) = dα − γ ∧ α for all α ∈ Λ. Note that γ is
d-closed and for all α ∈ Λn−1, one has dα = γ ∧ α. So Dα = 0 for all α ∈ Λn−1.
Notice that D is not a derivation, but instead one has

D(α ∧ β) = (Dα) ∧ β + (−1)iα ∧ (dβ) = (dα) ∧ β + (−1)iα ∧ (Dβ),(†)
for all α ∈ Λi, β ∈ Λ. One also sees easily that D2 = 0 and so we can define
the twisted cohomology groups H∗

D(g, R) = kerD/ Im D. The main purpose of this
present section is to prove:

Theorem 2.1 (Poincaré duality for Lie algebras). For all i ∈ {0, . . . , n}, one has
Hi(g, R) ∼= Hn−i

D (g, R).

To prove this result we first recall the Hodge star-operator ∗ : Λ → Λ. Choose a
basis {x1, . . . , xn} for g and consider the dual basis {α1, . . . , αn} for Λ1. Then for
each i ∈ {0, . . . , n}, set

∗(ασ(1) ∧ · · · ∧ ασ(i)) = (−1)sgn(σ)ασ(i+1) ∧ · · · ∧ ασ(n),

for every permutation σ ∈ Sn. Then ∗ extends to a unique linear isomorphism
∗ : Λi → Λn−i and ∗∗ = (−1)i(n−i). Notice that the bilinear map 〈 〉 : Λ× Λ → R
defined by 〈α, β〉 = ∗(α ∧ ∗β) is just the inner product on Λ with respect to which
the basis elements of the form αj1∧· · ·∧αji are orthonormal. Next define ∂ : Λ → Λ
by defining it on Λi to be ∂ = (−1)n(i+1)+1 ∗D∗, and set ∆ = ∂d + d∂. One has:

Lemma 2.2. (a) ∂ is the adjoint of d; that is, 〈dα, β〉 = 〈α, ∂β〉, for all α, β ∈ Λ.
(b) ∆ is self–adjoint; that is, 〈∆α, β〉 = 〈α, ∆β〉, for all α, β ∈ Λ.
(c) ker∆ = ker d ∩ ker ∂.

Proof. (a) Let i ∈ {0, . . . , n} and let α ∈ Λi, β ∈ Λi+1. We are required to show
that ∗(dα∧∗β) = ∗(α∧∗∂β) or equivalently dα∧∗β = α∧∗∂β. Since α∧∗β ∈ Λn−1,
we have D(α ∧ ∗β) = 0 and so by (†),

α ∧ ∗∂β = α ∧ ∗(−1)n(i+2)+1 ∗D ∗ β = (−1)n(i+2)+1+i(n−i)α ∧D ∗ β

= −(−1)iα ∧D ∗ β = dα ∧ ∗β.

(b) By part (a),

〈∆α, β〉 = 〈d∂α, β〉 + 〈∂dα, β〉 = 〈∂α, ∂β〉+ 〈dα, dβ〉
= 〈α, d∂β〉 + 〈α, ∂dβ〉 = 〈α, ∆β〉.

(c) Clearly ker d ∩ ker ∂ ⊂ ker∆. Conversely, let α ∈ ker∆. Then by part (a),

0 = 〈∆α, α〉 = 〈d∂α + ∂dα, α〉 = 〈∂α, ∂α〉+ 〈dα, dα〉,
which implies that ∂α = 0 and dα = 0, as required.

Theorem 2.3 (The Hodge decomposition theorem for Lie algebras). (a) Λ =
Im ∆⊕ ker∆.

(b) Λ = Im d⊕ Im ∂ ⊕ ker∆.
(c) ker d = Im d⊕ ker∆.
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Proof. (a) First, we claim that Im ∆ ∩ ker∆ = 0. To show this, suppose that
β ∈ Im ∆ ∩ ker∆. Then β = ∆α for some α and 0 = ∆β = ∆2α. Hence by
Lemma 2.2(b),

0 = 〈∆2α, α〉 = 〈∆α, ∆α〉.
So β = ∆α = 0. Thus Im ∆ ∩ ker∆ = 0 and so Λ = Im ∆ ⊕ ker∆ for dimension
reasons.

(b) Note that Im ∆ ⊂ Im d + Im ∂, by the definition of ∆. So, by (a) it suffices
to establish the following 3 conditions: (i) Im d ∩ Im ∂ = 0, (ii) Im d ∩ ker∆ = 0,
(iii) Im ∂ ∩ ker∆ = 0.

(i) Suppose that α = dβ and α = ∂γ for some β and γ. Then by Lemma 2.2(a),
〈α, α〉 = 〈dβ, ∂γ〉 = 〈d2β, γ〉 = 0. Hence α = 0 as required.

(ii) Suppose that α = dβ for some β and that ∆α = 0. Then by Lemma 2.2(c),
∂α = 0. So 0 = 〈∂α, β〉 = 〈∂dβ, β〉 = 〈dβ, dβ〉, which gives dβ = 0. Hence α = 0 as
required.

(iii) Suppose that α = ∂β for some β and that ∆α = 0. Then by Lemma 2.2(c),
dα = 0. So 0 = 〈dα, β〉 = 〈d∂β, β〉 = 〈∂β, ∂β〉, which gives ∂β = 0. Hence α = 0 as
required. This establishes (b).

(c) By part (b), since Im d⊕ker∆ ⊂ ker d, it suffices to show that kerd ∩ Im ∂ =
0. Suppose that α ∈ ker d and that α = ∂β for some β ∈ Λ. Then

0 = 〈dα, β〉 = 〈α, ∂β〉 = 〈∂β, ∂β〉.
Hence α = 0, as required.

We now present a dual version of Theorem 2.3. First, define δ : Λ → Λ by
defining it on Λi to be δ = (−1)n(i+1)+1 ∗ d∗, and set ∆ = δD + Dδ. Then
analogous to Lemma 2.2, one finds in the same way that:

Lemma 2.4. δ is the adjoint of D, ∆ is self–adjoint and ker∆ = kerD ∩ ker δ.

Just as in the proof of Theorem 2.3, Lemma 2.4 can then be used to establish:

Theorem 2.5. Λ = Im ∆⊕ker∆ = Im D⊕Im δ⊕ker∆ and kerD = Im D⊕ker∆.

We can now prove Theorem 2.1. By Theorem 2.3,

H∗(g, R) = ker d/ Imd = (Im d⊕ ker∆)/ Im d ∼= ker∆.

Similarly, by Theorem 2.5, one has H∗
D(g, R) ∼= ker∆. Theorem 2.1 then follows

immediately from the fact that ∗ : ker∆ → ker∆ is an isomorphism.

3. Unimodular extensions

It is well known that if α ∈ Λ1 is d-closed, then kerα is an ideal. Let a =
kerα ∩ kerγ. We have:

Lemma 3.1. If α ∈ Λ1 is D-closed, then a is an ideal.

Proof. Suppose that α is D-closed. Let x ∈ g and y ∈ a. Since ker γ is an ideal, we
have [x, y] ∈ kerγ. Since Dα = 0 and y ∈ a, one has

α([x, y]) = dα(x, y) = γ ∧ α(x, y) = 0.

So [x, y] ∈ a. Hence a is an ideal.
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Lemma 3.2. If α ∈ Λ1 and α 6= 0, then α is D-exact if and only if kerα = ker γ.

Proof. Indeed, α is D-exact if and only if α = kγ for some k ∈ R.

Now consider an extension a ↪→ g � g/a. The natural projection φ : g � g/a
induces a “pull-back” map φ∗ : Λ(g/a)∗ → Λg∗: if α ∈ Λi(g/a)∗, then the i-form
φ∗α is defined by

(φ∗α)(x1, . . . , xi) = α(φx1, . . . , φxi),

for all x1, . . . , xi ∈ g. It is well known that φ∗ commutes with d and thus induces
a homomorphism φ# : H∗(g/a, R) → H∗(g, R).

Lemma 3.3. If a ↪→ g � g/a is a unimodular extension, then φ∗ commutes with
D.

Proof. Let the canonical 1-forms of g and g/a be denoted γg and γg/a, respectively.
Since the extension is unimodular, one has γg = φ∗(γg/a). So

D(φ∗α) = d(φ∗α) − γg ∧ (φ∗α) = φ∗(dα) − φ∗(γg/a ∧ α) = φ∗(Dα).

By the above lemma, φ∗ induces a homomorphism φ# : H∗
D(g/a, R) → H∗

D(g, R).

Lemma 3.4. If a ↪→ g � g/a is a unimodular extension, then the induced map
φ# : H1

D(g/a, R) → H1
D(g, R) is injective.

Proof. Suppose that α ∈ Λ1(g/a)∗ and that φ∗α is D-exact. Then φ∗α = kγg for
some k ∈ R. So φ∗(α− kγg/a) = 0 and hence α = kγg/a and α is D-exact.

4. Proof of Theorem 1.1

First suppose that there exists a unimodular extension a ↪→ g � aff. Notice that
g can’t be unimodular, since aff isn’t. Hence cd(g) < n. Since H1(aff, R) 6= 0 one
has by Poincaré duality that H1

D(aff, R) 6= 0. Hence, by Lemma 3.4, H1
D(g, R) 6= 0.

So by Poincaré duality again, Hn−1(g, R) 6= 0 and hence cd(g) = n− 1.
Conversely, suppose that cd(g) = n−1. It follows by Poincaré duality that there

exists a D-closed 1-form α ∈ Λ which is not D-exact. Let a = kerα ∩ ker γ. By
Lemma 3.1, a is an ideal, and by Lemma 3.2, a has codimension 2. It remains to
show that g/a ∼= aff and that the extension a ↪→ g � aff is unimodular. Choose
elements x, y ∈ g such that kerγ = a ⊕ Ry and kerα = a ⊕ Rx, with γ(x) = 1
and α(y) = 1. To see that g/a ∼= aff, it suffices to show that γ([x, y]) = 0 and
α([x, y]) = 1. But γ([x, y]) = 0 since ker γ is an ideal. And since Dα = 0 one has

α([x, y]) = dα(x, y) = γ ∧ α(x, y) = 1.

Finally, notice that for all w ∈ g one has

tr(ad(w)|a) = tr(ad(w)|g)− γ([w, x]) − α([w, y]) = γ(w)− γ([w, x]) − α([w, y]).

In particular, since a is an ideal and since a ⊂ ker γ, one has tr(ad(w)|a) = 0 for all
w ∈ a. Furthermore,

tr(ad(y)|a) = γ(y)− γ([y, x]) = 0,

tr(ad(x)|a) = γ(x)− α([x, y]) = 1− α([x, y]) = 0.

We conclude that the extension is unimodular. This proves Theorem 1.1.
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5. Remarks

By Theorem 1.1, Lie algebras of cohomological codimension 1 are unimodular
extensions of aff. Recall that an extension a → g → aff is inessential if g possesses a
subalgebra complementary to a. Notice that an inessential extension a → g → aff is
completely determined by the related representation aff → Der(a) of aff in the Lie
algebra of derivations of degree 0 of a. Such representations are easy to construct
and hence give examples of Lie algebras of cohomological codimension 1. We remark
that the representations of aff are of two types: they are either faithful, or they
are determined by a single derivation of a. For example, in the latter case, if a is
an arbitrary unimodular Lie algebra, and if φ is a trace-free derivation of a, then
one obtains a Lie algebra g of cohomological codimension 1 by introducing two
additional generators x, y and imposing the following relations:

[x, y] = y, [x, w] = φ(w) for all w ∈ a, and [y, w] = 0 for all w ∈ a.

By construction, this is an inessential unfaithful unimodular extension of aff.
Notice however that a given Lie algebra g may be expressible in different ways

as a unimodular extension of aff, as the following example shows:

Example 5.1. Consider the Lie algebra g of dimension 8, with cd(g) = 7, having
the generators {x, y, z, w, a, b, c, d} and the following relations:

[x, y] = y + c, [x, z] = z, [x, w] = w,

[x, a] = −a, [x, c] = c, [x, d] = −2d,

[w, a] = b, [w, b] = z, [w, d] = a.

Notice that g is simultaneously:
(a) an essential unimodular extension of aff by the ideal 〈w, z, a, b, c, d〉,
(b) an inessential unfaithful unimodular extension of aff by 〈w, y, a, b, c, d〉,
(c) an inessential faithful unimodular extension of aff by 〈y, z, a, b, c, d〉.

We remark that if dim Hdim g−1(g, R) = 1, then g can be written as a unimodular
extension in only one way.

Proposition. Suppose that g is a finite dimensional Lie algebra with cd(g) =
dim g − 1 and dim Hdimg−1(g, R) = 1. If π1 : g → aff and π2 : g → aff are
two unimodular extensions, then kerπ1 = kerπ2.

Proof. As we saw in the proof of Theorem 1.1, the unimodular extensions g → aff
are parameterized by H1

D(g, R). So the Proposition follows from Theorem 2.1.

Finally, we give an equivalent alternative presentation of Theorem 1.1. First
note that every finite dimensional Lie algebra g is isomorphic to a codimension 1
subalgebra of a unimodular Lie algebra ĝ. Indeed, if g is unimodular, we just take
ĝ = g ⊕ R. Otherwise, let u be the kernel of the canonical 1-form γ, and choose
x ∈ g\u such that γ(x) = 1. Then one obtains the desired algebra ĝ by introducing
an additional generator z and imposing the following relations:

[z, x] = z and [z, w] = 0 for all w ∈ u.

Notice, in particular, that if m denotes the Lie algebra of the group of isometries
of the Minkowski plane,

m = 〈x, y, z | [x, y] = y, [x, z] = −z〉,
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then aff is isomorphic to the subalgebra t = 〈x, y〉. More generally, Theorem 1.1
gives:

Corollary. Let g be a finite dimensional Lie algebra. Then cd(g) = dim g − 1
if and only if there exists a finite dimensional unimodular Lie algebra ĝ and an
epimorphism π : ĝ → m such that g is isomorphic to π−1(t).

Proof. One direction is immediate from Theorem 1.1. Conversely, suppose that
cd(g) = dim g− 1. By Theorem 1.1, g is a unimodular extension of a codimension
2 ideal a; so we may assume that there are elements x, y ∈ g\a such that:
(a) u = a⊕ Ry is a unimodular ideal.
(b) [x, y] = y (mod a).

Now g is isomorphic to a codimension 1 subalgebra of the unimodular Lie algebra
ĝ constructed above. Furthermore, a is an ideal of ĝ and g/a ∼= m.
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