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Abstract. We provide a qualitative analysis of the n-dimensional dynamical
system:

q̇i = −
n∑

j=1

aij

qk
j

, qi(t) > 0, i = 1, . . . , n,

where k is an arbitrary positive integer. Under mild algebraic conditions on
the constant matrix A = (aij ), we show that every solution q(t), t ∈ [0, a),
extends to a solution on [0, +∞), such that limt→+∞ qi(t) = +∞, for i =
1, . . . , n. Moreover, the difference between any two solutions approaches 0 as
t → +∞. We then use this result to give a complete qualitative analysis of a
3-dimensional dynamical system introduced by F. Gesmundo and F. Viani in
modeling parabolic growth of three-oxide scales on pure metals.

1. Introduction

A metal oxide is a compound containing oxygen and metal. For instance, com-
mon rust is caused by the oxidation of metal. Certain pure metals can form different
oxides, and oxidation of such metals produces a multilayer oxide scale on the metal,
where the oxide layer containing the highest concentration of metal is in contact
with the surface of the metal, while the oxide layer containing the highest con-
centration of oxygen is in contact with the gas or oxygen to which the surface of
the metal is exposed. In the article [2], F. Gesmundo and F. Viani analysed the
parabolic growth of three-layer oxide scales on those metals which can form three
oxides. They obtained the following nonlinear three-dimensional dynamical system
as a model for the growth of such scales:

q̇1 = µ
K1

2q1
− µ− 1

µ

K2

2q2
,

q̇2 = −µ
K1

2q1
+
(

µ− 1
µ

+
ν

µ

)
K2

2q2
− ν − 1

ν

K3

2q3
,

q̇3 = − ν

µ

K2

2q2
+

K3

2q3
.

(1.1)
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Here Ki > 0 (i = 1, 2, 3) are rate constants, µ, ν are parameters, and qi > 0 is the
weight of oxygen contained in oxide i per unit area.

In the paper [1], H. C. Akuezue, M. W. Hirsch, and the author of the present
paper studied the following n-dimensional nonlinear dynamical system:

q̇i = −
n∑

j=1

aij

qj
, qi(t) > 0, i = 1, . . . , n.(1.2)

In that paper we established that under mild algebraic conditions on the real n×n
matrix A = (aij), the trajectories of (1.2) are well-behaved in the sense that every
solution q = (q1, . . . , qn) : [0, a] → Rn, 0 < a < +∞, can be extended to a solution
on [0, +∞), such that limt→+∞ qi(t) = +∞, i = 1, . . . , n; moreover, the difference
between any two solutions is bounded as a function of t. Finally, if A is also
irreducible and tridiagonal, then all solutions are eventually monotone increasing on
[0, +∞). We then used this information about (1.2) to obtain a partial qualitative
analysis of the dynamical system (1.1). We obtained the result that if µ, ν > 1,
then (1.1) has a unique parabolic solution of the form qi(t) = ci

√
t, ci > 0, t > 0,

i = 1, 2, 3. We then conjectured that every solution of (1.1) in R3
++ is attracted to

this parabolic solution, where, for n any positive integer, we define

Rn
++ = {(x1, . . . , xn) ∈ Rn | xi > 0, i = 1, . . . , n}.

In the present paper, we study equation (1.2) as a special case of the more general
n-dimensional nonlinear system:

q̇i = −
n∑

j=1

aij

qk
j

, qi(t) > 0, i = 1, . . . , n, t ∈ [0, +∞).(1.3)

Here, k ≥ 1 is an arbitrary positive integer and A = (aij) is a real n × n matrix.
We show that if the matrix A satisfies the same algebraic conditions mentioned
above in relation to (1.2), then every solution q = (q1, . . . , qn) : [0, a] → Rn

++,
0 < a < +∞, of (1.3) can be uniquely extended to a solution on [0, +∞), such that
limt→+∞ qi(t) = +∞, i = 1, . . . , n. Furthermore, the difference between any two
solutions approaches 0 as t → +∞. Finally, if A is also irreducible and tridiagonal,
then all solutions are eventually monotone increasing on [0, +∞). We then use
these results to confirm the conjecture in [1] that all solutions of (1.1) in R3

++ are
attracted to the parabolic solution of (1.1).

Now consider the following dynamical system, which we dub, “the generalized
Lotka-Volterra equations” [4, p. 3]:

ṗi = pd
i

n∑
j=1

aijp
k
j , pi(t) ≥ 0, i = 1, . . . , n, t ∈ [0, +∞).(1.4)

Here, d ≥ 1 is an arbitrary positive number and k ≥ 1 is an arbitrary positive
integer. Observe that the change of variable pi = 1/qi transforms (1.3) into the
specific case of (1.4) where d = 2.

We state our main result in terms of system (1.4). For n a positive integer, we
use the notation

Rn
+ = {(x1, . . . , xn) ∈ Rn | xi ≥ 0, i = 1, . . . , n}.

We say that a real n× n matrix A = (aij) is irreducible if for each distinct pair of
indices i, j with 1 ≤ i 6= j ≤ n, there exists a finite sequence i = k0, . . . , km = j
such that Akr−1,kr 6= 0, r = 1, . . . , m.
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Theorem I. Assume that the n×n matrix A = (aij) in (1.4) satisfies the following
four conditions :

(i) detA 6= 0 and aij ≥ 0, for i 6= j;
(ii) A is irreducible;
(iii) for all x = (x1, . . . , xn) ∈ Rn

+, if xi

∑n
j=1 aijxj = 0 for i = 1, . . . , n, then

x = 0;
(iv) every real eigenvalue of A is negative.

Then every solution of (1.4) of the form

x = (x1, . . . , xn) : [0, a] → Rn
++, 0 < a < +∞,

extends uniquely to a solution

x : [0, +∞) → Rn
++,

such that

lim
t→+∞xi(t) = 0, i = 1, . . . , n.

Moreover, if the matrix A is also tridiagonal, then x(t), t ∈ [0, +∞), is eventually
monotone decreasing on [0, +∞). Finally, in case d = 2, any two solutions x(t),
y(t), t ∈ [0, +∞), of (1.4) in Rn

++ satisfy

xi(t)− yi(t) = o(xiyi), i = 1, . . . , n.(1.5)

For d = 2, the following is an immediate corollary of Theorem I.

Corollary I. Let the real n × n matrix A = (aij) satisfy conditions (i)–(iv) of
Theorem I. Then every solution of (1.3) of the form

q = (q1, . . . , qn) : [0, a] → Rn
++, 0 < a < +∞,

extends uniquely to a solution

q : [0, +∞) → Rn
++,

such that

lim
t→+∞ qi(t) = +∞, i = 1, . . . , n.

Moreover, if the matrix A is also tridiagonal, then q(t), t ∈ [0, +∞), is eventually
monotone increasing on [0, +∞). Finally, if r(t), t ∈ [0, +∞), is any other solution
of (1.3) in Rn

++, then we have

lim
t→+∞ ‖q(t)− r(t)‖ = 0.

Theorem II. Assume that in the dynamical system (1.1), we have m, n > 1. Then
every solution p : [0, a] → R3

++, 0 < a < +∞, of (1.1) extends uniquely to a
solution p : [0, +∞) → R3

++ such that limt→+∞ pi(t) = +∞, i = 1, 2, 3, and this
solution is eventually monotone strictly increasing on [+∞). Moreover, the system
(1.1) has a unique parabolic solution qi(t) = ci

√
t, ci > 0, i = 1, 2, 3, 0 < t < +∞.

Finally, if p : [0, +∞) → R3
++ is any other solution of (1.1), then

lim
t→+∞ ‖p(t)− q(t)‖ = 0.
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2. Preliminaries

In this section we present the background material and preliminary lemmas that
we will use in the proofs of Theorem I and Theorem II.

Definition 2.1. Let W ⊆ Rn be an open set and F : W ×R+ → Rn a continu-
ously differentiable vector field, and let E be any subset of W. Then the system

ẋi = Fi(x1, . . . , xn, t), x = (x1, . . . , xn) ∈ E, i = 1, . . . , n, t ∈ R+,(2.1)

is said to be cooperative in E if ∂Fi/∂xj(a) ≥ 0 for i 6= j, a ∈ E.

The following lemma is the Müller-Kamke comparison principle (see Hirsch [3,
Theorem 1.1]). For vectors x,y, we use the notation x ≺ y to mean that xi < yi

for i = 1, . . . , n; in a similar manner, we write x � y if xi ≤ yi for i = 1, . . . , n.

Lemma 2.2 (Müller-Kamke Comparison Principle). Let F and W be as in Defi-
nition 2.1. Let E be a convex subset of W having nonempty interior. Suppose that
the system (2.1) is cooperative in E. Let x,y : [a, b] → E be solutions of (2.1) such
that x(a) ≺ y(a) (resp., x(a) � y(a)). Then x(t) � y(t) (resp., x(t) � y(t)) for all
t ∈ [a, b].

The next lemma, due to J. Smillie [5] with improvements by H. Smith [6], demon-
strates long-term monotonicity of solutions to autonomous cooperative dynamical
systems that are irreducible and tridiagonal.

Lemma 2.3. Suppose that the system (2.1) is autonomous, cooperative, irreducible
and tridiagonal in a convex set E ⊆ W having nonempty interior. Let x(t) be a
solution in E of (2.1) on a maximal interval of the form [0, a), 0 < a ≤ +∞. Then
each coordinate xi(t) is eventually monotone increasing or decreasing.

We borrow the next lemma from [1].

Lemma 2.4. Suppose that the real n×n matrix A satisfies conditions (i), (ii) and
(iv) of Theorem I. Then A has an eigenvector v ∈ Rn

++ with real eigenvalue λ < 0.

Lemma 2.5. Let F : Rn
++ × R+ → Rn be a continuously differentiable time-

dependent vector field on Rn ×R+ such that the system

ẋi = Fi(x, t)(2.2)

is cooperative in Rn
++. Suppose that

(i) there exists x0 ∈ Rn
++, with F (x0, 0) < 0;

(ii) there exists a solution y : [0, +∞)→ Rn
++ of (2.2) such that y(0) � x0.

Let x(t), t ∈ [0, a], 0 < a < +∞, be any solution of (2.2) in Rn such that x(0) = x0.
Then this solution extends to a unique, monotone decreasing solution

x : [0, +∞) → Rn
++,

such that y(t) � x(t) for t ∈ [0, +∞).

Proof. Extend the solution x(t), t ∈ [0, a], to a unique maximal solution x : [0, b)→
Rn

++. It follows from the Müller-Kamke comparison principle (Lemma 2.2) that
this maximal solution is strictly decreasing on [0, b). We claim that b = +∞.
Suppose that b < +∞. Then limt→b− x(t) ∈ ∂Rn

++ ⊆ Rn
+. Therefore, there exists

1 ≤ i ≤ n such that limt→b− xi(t) = 0; then by the comparison principle, we
have 0 < yi(t) ≤ xi(t), t ∈ [0, b); consequently, 0 = limt→b− xi(t) ≥ limt→b− yi(t) =
yi(b) > 0. This contradiction proves the claim. The remainder of the lemma follows
from the comparison principle.
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Lemma 2.6. Suppose that the matrix A = (aij) in (1.4) satisfies conditions (i)–
(iii) of Theorem I. Then every solution of (1.4) of the form

p = (p1, . . . , pn) : [0, a] → Rn
++, 0 < a < +∞,

extends uniquely to a solution

p = (p1, . . . , pn) : [0, +∞) → Rn
++,

such that limt→+∞ pi(t) = 0, i = 1, . . . , n. Consequently, every solution of (1.3) of
the form

q = (q1, . . . , qn) : [0, a] → Rn
++, 0 < a < +∞,

extends uniquely to a solution

q = (q1, . . . , qn) : [0, +∞) → Rn
++,

such that limt→+∞ qi(t) = +∞, i = 1, . . . , n.

Proof. Let v = (v1, . . . , vn) > 0 be an eigenvector of A given in Lemma 2.4 with
eigenvalue λ < 0. Let u = (v

1
k
1 , . . . , v

1
k
n ). Chose c > 0 so large that cu � p0. Define

the vector field F : Rn
+ → Rn by

Fi(x1, . . . , xn) = xd
i

n∑
j=1

aijx
k
j , i = 1, . . . , n.

Set x0 = cu; then we have Fi(x0) = λcd+kv
1+ d

k

i < 0, for i = 1, . . . , n. Also,
Fi(0) = 0.

By the comparison principle, p(t) is strictly decreasing on [0, a], and p(0) � 0.
Because F (0) = 0, we see that the constant function 0 is a solution of (1.4) in Rn

+,
and hence, because (1.4) is cooperative in Rn

+, the comparison principle implies
that p(t) � 0, t ∈ [0, a]. The usual compactness argument then implies that the
solution p(t) extends over [0, +∞). Since p(t) is strictly decreasing on [0, a] and
bounded below by 0, we necessarily have that p(t) converges to an equilibrium
point in Rn

+. Condition (iii) of Theorem I implies that 0 is the only equilibrium
in Rn

+, hence we have limt→+∞ p(t) = 0. This proves the first part of the lemma.
The remainder of the lemma follows from making the substitution pi(t) = 1/qi(t),
i = 1, . . . , n, t ∈ [0, a].

Lemma 2.7. Let p(t)=(p1(t), . . . , pn(t)) and q(t)=(q1(t), . . . , qn(t)), t ∈ [0, +∞),
be solutions of (1.3) in Rn

++, with p ≺ q. For i = 1, . . . , n, let ri, si, ui, vi, Pi, Qi

be defined by

ri = pi − qi, si =
1
pi

, ui =
1
qi

, vi = pk+1
i − qk+1

i ,

Qi =
k∑

j=1

pk−j
i qj−1

i , Pi = Qi

/ k+1∑
j=1

pk+1−j
i qj−1

i .

Let r, s,u,v be defined by

r = (r1, . . . , rn), s = (s1, . . . , sn), u = (u1, . . . , un), v = (v1, . . . , vn).
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Then for i = 1, . . . , n, the function (r(t), s(t),u(t),v(t)), t ∈ [0, +∞), is a solution
in R4n

++ of the following dynamical system:

ṙi = Hi1(r, s,u,v, t) :=
n∑

j=1

aijQj(t)rjs
k
j uk

j ,(2.3.1)

ṡi = Hi2(r, s,u,v, t) := s2
i

n∑
j=1

aijs
k
j ,(2.3.2)

u̇i = Hi3(r, s,u,v, t) := u2
i

n∑
j=1

aiju
k
j ,(2.3.3)

v̇i = Hi4(r, s,u,v, t)(2.3.4)

:= −(k + 1)

 n∑
j 6=i

aij

pk
j (t)

Pi(t)vi + (k + 1)qk
i (t)

n∑
j 6=i

aijQj(t)rjs
k
j uk

j .

Moreover, this system is cooperative in R4n
++. Finally, for any vector (r0, s0,u0,v0)

in R4n
++, there exists a vector (r, s,u,v) � (r0, s0,u0,v0) such that

Hij(r, s,u,v, 0) < 0, i = 1, . . . , n, j = 1, 2, 3, 4.

Proof. First, note that pk
i − qk

i = (pi − qi)Qi, i = 1, . . . , n. Using this identity, it is
straightforward to prove (2.3.1). Equations (2.3.2) and (2.3.3) follow directly from
the definitions. Using the identity pk

i − qk
i = (pk+1

i − qk+1
i )Pi, the details of (2.3.4)

are as follows:

v̇i = (k + 1)pk
i ṗi − (k + 1)qk

i q̇i

= −(k + 1)pk
i

n∑
j=1

aij

pk
j

+ (k + 1)qk
i

n∑
j=1

aij

qk
j

= −(k + 1)aii − (k + 1)
n∑

j 6=i

aijp
k
i

pk
j

+ (k + 1)aii + (k + 1)
n∑

j 6=i

aijq
k
i

qk
j

= −(k + 1)
n∑

j 6=i

aij

(
pk

i

pk
j

− qk
i

qk
j

)

= −(k + 1)

 n∑
j 6=i

aij

pk
j

 (pk
i − qk

i ) + (k + 1)qk
i

n∑
j 6=i

aij

(
pk

j − qk
j

pk
j qk

j

)

= −(k + 1)

 n∑
j 6=i

aij

pk
j

 (pk+1
i − qk+1

i )Pi + (k + 1)qk
i

n∑
j 6=i

aij

[
(pj − qj)Qj

pk
j qk

j

]

= −(k + 1)

 n∑
j 6=i

aij

pk
j

Pivi + (k + 1)qk
i

n∑
j 6=i

aijQjrjs
k
j uk

j .

Therefore (2.3.4) holds. Because aij ≥ 0 for i 6= j, it is clear that the system (2.3)
is cooperative in Rn

++.
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To prove the last statement of the lemma, let a = (α1, . . . , αn) � 0 be an
eigenvector of A such that Aa = λa, where λ < 0. By Lemma 2.4, such an
a and λ exist. Let (r0, s0,u0,v0) be a given vector in R4n

++. Select b > 0 so

large that bα
1
k

i > max{s0i, u0i}, for i = 1, . . . , n. Then choose c > 0 so large
that c/[b2kαiQi(0)] > r0i, for i = 1, . . . , n. Finally, pick e > 0 so large that for
i = 1, . . . , n, e/Pi(0) > v0i and

cqk
i (0)

n∑
j 6=i

aijαj − e

n∑
j 6=i

aij

pk
j (0)

< 0.

For i = 1, . . . , n, define ri, si, ui, vi by

ri =
c

b2kαiQi(0)
, si = bα

1
k

i , ui = bα
1
k

i , vi =
e

Pi(0)
.

Then (r, s,u,v) � (r0, s0,u0,v0). Moreover, for i = 1, . . . , n, we have

Hi1(r, . . . ,v, 0) = cλαi < 0,

Hi2(r, . . . ,v, 0) = b2+kλα
1+ 2

k

i < 0,

Hi3(r, . . . ,v, 0) = b2+kλcα
1+ 2

k

i < 0,

Hi4(r, . . . ,v, 0) = cqk
i (0)

n∑
j 6=i

aijαj − e
n∑

j 6=i

aij

pk
j (0)

< 0.

This proves the lemma.

Lemma 2.8. Let the n×n matrix A = (aij) satisfy conditions (i), (ii), and (iii) of
Theorem I. Let p(t) and q(t), t ∈ [0, +∞), be solutions of (1.3) in Rn

++. Assume
that q(0) ≺ p(0). Then for i = 1, . . . , n, we have

sup
0≤t<+∞

|pk+1
i (t)− qk+1

i (t)| < +∞.(2.4)

Proof. For t ∈ [0, +∞) and i = 1, . . . , n, define

ri(t) = pi(t)− qi(t), si(t) =
1

pi(t)
, ui(t) =

1
qi(t)

, vi(t) = pk+1
i − qk+1

i .

For d = 2, the functions s and v are solutions of the cooperative system (1.4).
Hence, because q(0) ≺ p(0), we have x(0) ≺ u(0). Consequently, by the com-
parison principle, we have 0 ≺ s,u, from which it follows that 0 ≺ r,v. Next,
for i = 1, . . . , n and j = 1, 2, 3, 4, let Hij(r, s,u,v, t), t ∈ [0, +∞), be defined as
in Lemma 2.7. By this lemma, the function (r(t), s(t),u(t),v(t)), t ∈ [0, +∞), is
a solution of the dynamical system (2.3) in R4n

++; moreover, there exists a vector
x0 = (r0, s0,u0,v0) ∈ R4n

++ such that x0 � r(0), s(0),u(0)v(0)) and

Hij(r0, . . . ,v0, 0) < 0, i = 1, . . . , n, j = 1, 2, 3, 4.

By Lemma 2.7, (2.3) is cooperative in R4n
++, and hence by Lemma 2.6, there exists

a monotone decreasing x(t), t ∈ [0, +∞), of (2.3) in R4n
++ such that (r(t), s(t),u(t),

v(t)) ≺ x(t), t ∈ [0, +∞). This proves (2.4).
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3. Proof of Theorem I

In this section we prove Theorem I.

Lemma 3.1. Suppose that the matrix A = (aij) satisfies the hypothesis of Theorem
I. Let r(t) and q(t), t ∈ [0, +∞), be solutions of (1.3) in Rn

++. Then

lim
t→+∞ ‖r(t)− q(t)‖ = 0.

Proof. By Lemma 2.3, limt→+∞ ri(t) = qi(t) = +∞, for i = 1, . . . , n. Therefore
there exists a t0 > 0 such that ri(t0) > qi(0), for i = 1, . . . , n. Define pi(t) =
ri(t + t0), i = 1, . . . , n. Then p(t), t ∈ [0, +∞), is a solution of (1.3) such that
p(0) � q(0). Therefore, by the last statement of Lemma 2.7 and the Comparison
Principle, the functions pk+1

i − qk+1
i , i = 1, . . . , n, are bounded on [0, +∞). Now,

by Lemma 2.3, for i = 1, . . . , n, we have limt→+∞ pi(t) = +∞, and pi − qi =
(pk+1

i − qk+1
i )/

∑k+1
j=1 pk+1−j

i qj−1
i , therefore, we have limt→+∞(pi(t) − qi(t)) = 0.

Finally, for 1 ≤ i ≤ n, limt→+∞ ṙi(t) = 0, hence we have limt→+∞(pi(t)−ri(t)) = 0.
This proves the lemma.

Proof of Theorem I. To prove Theorem I, let the n × n matrix A = (aij) satisfy
the hypothesis of Theorem I, and let x(t), t ∈ [0, a), 0 < a < +∞, be a solution of
(1.4) in Rn

++. Then by Lemma 2.6, this solution extends uniquely to a solution

x : [0, +∞) → Rn
++,

such that limt→+∞ xi(t) = 0, i = 1, . . . , n. Moreover, by Lemma 2.3, if A is
irreducible and tridiagonal, then each coordinate xi(t) is eventually monotone de-
creasing on [0, +∞).

Finally, consider the case where d = 2. Let y(t), t ∈ [0, +∞), be another solution
of (1.4) in Rn

++. For i = 1, . . . , n, let pi(t), qi(t) be defined by

pi(t) =
1

xi(t)
, qi(t) =

1
yi(t)

;

then we have [xi(t) − yi(t)]/[xi(t)yi(t)] = qi(t) − pi(t), and hence, by Lemma 3.1,
we have xi − yi = o(xiyi). This completes the proof of Theorem I.

4. Proof of Theorem II

In this final section we prove Theorem II. First, we need the following result
from [1].

Lemma 4.1. Let K1, K2, K3 > 0 and µ, ν > 1 be given constants. Define the 3×3
matrix A = (aij) by

A =


−µK1

2
µ−1

µ
K2
2 0

µK1
2 −[µ−1

µ + ν
µ

K2
2

ν−1
ν ] K3

2

0 ν
µ

K2
2 −K2

2

 .

Then A satisfies conditions (i)–(iv) of Theorem I.

Proof of Theorem II. Assume that in the dynamical system (1.1), we have µ, ν > 1.
Let p(t) = (p1(t), p2(t), p3(t)), t ∈ [0, a), 0 < a < +∞, be a solution of (1.1) in
R3

++. By Corollary I and Lemma 4.1, this solution extends to a unique solution
p : [0, +∞)→ R3

++ such that limt→+∞ pi(t) = +∞ for i = 1, 2, 3.
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From the results in [1], there exists a unique parabolic solution of (1.1) of the
form

q(t) = (c1

√
t, c2

√
t, c3

√
t), ci > 0, i = 1, 2, 3, 0 < t < +∞.

From Corollary I and Lemma 4.1, we have that limt→+∞ ‖p(t)− q(t)‖ = 0.
Finally, because q(t) is a solution of (1.1), we see that

c1 = µ
K1

2c1
− µ− 1

µ

K2

2c2
,

c2 = −µ
K1

2c1
+
(

µ− 1
µ

+
ν

µ

)
K2

2c2
− ν − 1

ν

K3

2c3
,

c3 = − ν

µ

K2

2c2
+

K3

2c3
.

(4.1)

For 1 ≤ i ≤ j ≤ 3, we have limt→+∞ pi(t)/pj(t) = ci/cj, and hence by (1.1) and
(4.1), we see that ṗi(t) > 0 for t sufficiently large, i.e., each coordinate pi(t) is
eventually monotone strictly increasing on [0, +∞). This completes the proof of
Theorem II.
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