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Abstract. If Ef (R) is the set of endpoints of radii which have length greater
than or equal to R > 0 under a conformal map f of the unit disc, then
cap Ef (R) = O(R−1/2) as R→∞ for the logarithmic capacity of Ef (R). The
exponent −1/2 is sharp.

Suppose D is the unit disc in the plane. A well-known theorem by Beurling [Beu]
states that if f : D → C is conformal, then the set of radii whose images under
f have infinite length has vanishing logarithmic capacity. We give a quantitative
version of this statement which is asymptotically sharp and improves an estimate
by Pommerenke [Pom, p. 215].

Theorem. There exists a universal constant K > 0 with the following property.
Suppose f : D → C is a conformal map with f ′(0) = 1. If Ef (R) is the set of

all ζ ∈ ∂D with length f
(
[0, ζ)

) ≥ R > 0, then capEf (R) ≤ K/
√

R.
On the other hand, there exist functions f , e.g. the Koebe function, for which

capEf (R) ≥ 1
2
√

R
for large R.

Our theorem implies that cap Ef (R) = O(R−1/2) as R → ∞ for all conformal
maps f of D and that 1/2 is the best possible constant in this statement.

1. Notation and auxiliary results

A curve γ : I → C is a continuous mapping of an interval I ⊆ R. It is
understood that a curve is locally rectifiable. If we speak of a curve in an open set
Ω, then we allow the endpoints of the curve to lie on the boundary of the set. A
curve γ in Ω connects two sets A, B ⊆ Ω, if γ has one endpoint in A and one in B.
We denote by length(γ) ∈ [0,∞] the euclidean length of γ.

For the proof of our theorem we need the following version of the Gehring-
Hayman theorem (cf. [GH], [Pom, p. 88]).

Theorem A. There is a universal constant C > 0 with the following property.
Suppose f : D → C is conformal, γ is a curve in D with endpoints 0 and ζ ∈ ∂D,
and [0, ζ) is the radius of D with endpoint ζ. Then

length f
(
[0, ζ)

) ≤ C length(f ◦ γ).
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The modulus mod Γ ∈ [0,∞] of a family Γ of curves in an open set Ω is defined
as

mod Γ = inf
ρ

∫
Ω

ρ(z)2 dm2(z).

Here m2 is two-dimensional Lebesgue measure and the infimum is taken over all
Borel measurable densities ρ : Ω → [0,∞] that satisfy

∫
γ

ρ(z) |dz| ≥ 1 for all γ ∈ Γ,
where |dz| means integration with respect to euclidean arc-length. The notation
for the modulus should indicate which reference set Ω we consider, but we will
suppress this, since it will be clear from the context which Ω we mean. If Γ1 is a
curve family in some open set Ω1, f : Ω1 → Ω2 is a conformal map and Γ2 is the
curve family in Ω2 consisting of the curves f ◦ γ, γ ∈ Γ1, then mod Γ1 = mod Γ2.
See [Pom, Ch. 9] for basic properties of the modulus.

We denote the logarithmic capacity of a Borel set E ⊆ C by cap E. For the
definition of the logarithmic capacity see [Pom, Ch. 9].

The following statement which relates the concepts of modulus and capacity is
needed in the proof of the theorem. It is part of Pfluger’s theorem (cf. [Pom, p.
212]).

Theorem B. Suppose E is a Borel subset of ∂D and ΓE(ε) is the family of all
curves γ in Ω = {z ∈ D : ε < |z| < 1} that connect {z ∈ D : |z| = ε} and E. Then
for sufficiently small ε > 0

cap E ≤ 1 + ε√
ε

exp
(
− π

mod ΓE(ε)

)
.

The next lemma states a standard modulus estimate. The constant 2π in this
inequality is crucial to get the right asymptotic behavior in the theorem. The
usefulness of modulus estimates with sharp constants is well-known and dates back
to Ahlfors’s distortion theorem (cf. [Ahl]).

Lemma. Suppose Ω ⊆ C is a region and Γ is a family of curves in Ω which have
one endpoint in a compact set M ⊆ Ω. Suppose M is contained in a disc of diameter
δ > 0 centered at the origin. If L ≥ δ and length γ ≥ L for all γ ∈ Γ, then

mod Γ ≤ 2π

log(1 + L/δ)
.

This lemma and its proof are similar to Lem. 3.2 in [BKR].

Proof of the lemma. In addition to our assumptions on M we may assume that
there exists at least one rectifiable curve in Ω which connects a point in Ω to a
point in M . For otherwise it is easy to see that mod Γ = 0. (Consider test functions
ρ which are equal to ε > 0 on B ∩ Ω where B is some open disc containing M and
0 elsewhere. Let ε tend to 0.)

For w ∈ Ω define l(w) = infγ length(γ), where the infimum is taken over all curves
in Ω connecting w and M . The additional assumption on M implies that l(w) < ∞
for all w ∈ Ω. The function l is continuous on Ω and satisfies l(w) ≥ |w| − δ/2 for
w ∈ Ω. Moreover, if γ : [0, t0] → C is a curve in Ω parameterized with respect to
arc-length and if γ(0) ∈ M , then l(γ(t)) ≤ t for t ∈ (0, t0].
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Define ρ : Ω → [0,∞) by

ρ(w) =


1

(log(1 + L/δ))(δ + l(w))
if l(w) ≤ L,

0 otherwise.

Obviously, the function ρ is Borel measurable and we claim that
∫

γ
ρ(w) |dw| ≥ 1

for all γ ∈ Γ.
To see this let γ ∈ Γ be arbitrary. We may assume that γ : I → C has an

arc-length parametrization with I = [0, length(γ)] and that γ(0) ∈ M . We have
l(γ(s)) ≤ s for all s ∈ I\{0}. By assumption length(γ) ≥ L and so∫

γ

ρ(w) |dw| ≥ 1
log(1 + L/δ)

∫ L

0

ds

δ + l(γ(s))
≥ 1

log(1 + L/δ)

∫ L

0

ds

δ + s
= 1.

Therefore, if L ≥ δ

mod Γ ≤
∫

Ω

ρ(w)2 dm2(w)

=
1

[log(1 + L/δ)]2

∫
{w∈Ω:l(w)≤L}

dm2(w)
(δ + l(w))2

≤ 1
[log(1 + L/δ)]2

∫
{w∈C:|w|≤L+δ/2}

dm2(w)
(δ/2 + |w|)2

=
2π

log(1 + L/δ)
+ 2π

log 2− 1 + δ/(2L + 2δ)
[log(1 + L/δ)]2

≤ 2π

log(1 + L/δ)
.

The lemma follows.

2. Proof of the theorem

The idea of the proof is essentially the same as in [Pom, p. 215–216]. A limiting
argument is employed in Pfluger’s theorem which is related to the concept of reduced
extremal distance (cf. [Ahl]). The new ingredients in our proof are the more refined
modulus estimate of the lemma and the use of the Gehring-Hayman theorem. The
proof will show that for the constant K in the theorem we can take K =

√
2C

where C is the constant in the Gehring-Hayman theorem.
We use the notation of the theorem and may assume f(0) = 0. Let ε ∈ (0, 1) be

arbitrary. Let Γ1(ε) be the family of all curves in {z ∈ D : ε < |z| < 1} connecting
{z ∈ D : |z| = ε} and Ef (R). We leave it to the reader to show that the set Ef (R)
is a countable intersection of open subsets of ∂D. Hence it is a Borel set.

Suppose γ ∈ Γ1(ε) and let z0 ∈ D, |z0| = ε, and ζ ∈ Ef (R) be the endpoints of
γ. Let [0, z0] be the line segment with endpoints 0 and z0. If we join [0, z0] and γ,
then we get a curve γ̃ in D connecting 0 and ζ. By the Gehring-Hayman theorem
and by definition of Ef (R)

length(f ◦ γ̃) ≥ (1/C) length f
(
[0, ζ)

) ≥ R/C.

By Koebe’s distortion theorem (cf. [Pom, p. 9]), |f ′(z)| ≤ (1 + 5ε) if |z| ≤ ε and
ε > 0 is sufficiently small. It follows that for small ε

length(f ◦ γ) ≥ R/C − (ε + 5ε2) =: L.
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We now apply the lemma for the region Ω = f
(
D\{z ∈ D : |z| ≤ ε}), the compact

set M = f
({z ∈ D : |z| = ε}) ⊆ Ω and the curve family Γ2(ε) = {f ◦γ : γ ∈ Γ1(ε)}.

By Koebe’s distortion theorem M is contained in a disc centered at the origin of
diameter δ = 2ε(1 + 3ε) for small ε > 0. It follows that for small ε > 0

mod Γ1(ε) = mod Γ2(ε) ≤ 2π

log
(R/C+ε+ε2

2ε(1+3ε)

) .

Hence Pfluger’s theorem implies

capEf (R) ≤ lim inf
ε→0

(1 + ε)(2 + 6ε)1/2

(R/C + ε + ε2)1/2
=

√
2C√
R

.

The first part of the theorem follows.
For the second part consider the Koebe function f(z) = z/(1−z)2, z ∈ C\{1}. If

R > 1/4 there exists φ ∈ (0, π) such that R = 1/
(
4 sin2(φ/2)

)
. Since length f

(
[0, ζ)

)
≥ |f(ζ)| for ζ ∈ ∂D, we have

A = {eiα : α ∈ [−φ, φ]} ⊆ Ef (R).

Since the capacity of the circular arc A is cap A = sin(φ/2) (cf. [Pom, p. 207]) we
obtain capEf (R) ≥ 1

2
√

R
. The theorem follows.
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