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LINDELÖF PROPERTY AND ABSOLUTE EMBEDDINGS
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(Communicated by Alan Dow)

Abstract. It is proved that a Tychonoff space is Lindelöf if and only if when-
ever a Tychonoff space Y contains two disjoint closed copies X1 and X2 of X,
then these copies can be separated in Y by open sets. We also show that a
Tychonoff space X is weakly C-embedded (relatively normal) in every larger
Tychonoff space if and only if X is either almost compact or Lindelöf (normal
almost compact or Lindelöf).

1. Introduction and results

Notations and terminology follow [En]. Unless otherwise stated, all spaces are
assumed to be Tychonoff (and T1). By βX we denote the Stone-Cech extension of
the space X. Recall that the Lindelöf number of a space X , denoted by l(X), is
the smallest cardinal τ such that every open cover of X has a subcover of size not
greater than τ . If l(X) ≤ ω, then X is called Lindelöf. For a non-compact space X
put λ(X) = min{|A| : A ⊂ X and ClX A is not compact }. λ(X) might be called
the index of boundedness of X , since λ(X) ≥ ω1 if and only if X is ω-bounded.

Observe that if µ < λ(X), then each subset A ⊂ X of cardinality |A| ≤ µ has a
complete accumulation point, so X is initially µ-compact (i.e., every open cover of
X of size not bigger than µ has a finite subcover) [St, Theorem 2.2].

Two subsets A and B of a space X are said to be completely separated if there
is a continuous function f : X → R so that f(A) = {0} and f(B) = {1}.

The main result of the paper is the following theorem, proving true the conjecture
of Arhangel’skij [AT, Problem 2].

Theorem 1.1. For a Tychonoff space X the following conditions are equivalent:
1. X is Lindelöf.
2. If a Tychonoff space Y contains two disjoint closed copies X1 and X2 of X,

then these copies can be separated in Y by open sets.

Hewitt was the first to consider the problem of whether a space X is C-embedded
into every larger Tychonoff space Y (that is, every continuous function on X can
be extended to a continuous function on Y ). It was proved by Hewitt and Smirnov
[He], [Sm] (see also [GJ, Ex. 6J]) that this is the case if and only if X is almost
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compact, i.e. |βX \ X | ≤ 1, or, equivalently, for every two disjoint completely
separated closed subsets of X at least one is compact.

Later, R.Blair proved that a space X is absolutely ν-embedded (that is, νX ⊂ νY
whenever X ⊂ Y ) if and only if X is either realcompact or almost compact [Bl].
R.Blair, A.Hager and D.Johnson proved that a space X is absolutely z-embedded
(that is, each zero-set of X can be extended to a zero-set of Y whenever X ⊂ Y )
if and only if X is either Lindelöf or almost compact. They also provided several
interesting characterizations of such spaces [Bl], [BH], [HJ]. E.g. these are the
spaces so that the C(X) — ring of continuous functions on X — has no proper
subalgebra which contains constant functions, separates points and closed sets,
is closed under uniform convergence and is closed under inversion in C(X) [HJ,
Theorem 3]. Another result, which will be usefull for us, says that if every pair of
disjoint non-compact zero-sets of X consists of Lindelöf sets, then X itself is either
Lindelöf or almost compact (and hence absolutely z-embedded) [BH, Theorem 4.1].

Recently, the following weaker version of C-embedding has attracted attention,
in particular in the theory of relative topological properties.

Definition 1.2 (Arhangel’skij). A subspace X is weakly C-embedded into a space
Y if every continuous real-valued function on the space X can be extended to a
real-valued function on Y , which is continuous in all points of X .

Notice that, while C-embedding and C∗-embedding (if we assume that only
bounded functions must have an extension) are, in general, different notions, weak
C-embedding coincides with weak C∗-embedding. (Just consider an unbounded
function as a function f : X → (−1, 1), extend it to the function f̃ : Y → [−1, 1],
which is continuous in all points of X and note that ClY f−1{−1, 1} ∩ X = ∅, so
we can modify f̃ to have value 0 in all points y with f(y) = ±1 without any loss of
continuity at the points of X .)

Every dense embedding into a Tychonoff space is a weak C-embedding [Ar], but
in the case of non-dense embedding this concept is far from being trivial.

Arhangel’skij [Ar] observed that if X is almost compact or Lindelöf, then every
embedding of X into a larger Tychonoff space is a weak C-embedding. Surprisingly,
these are the only possibilities. Precisely, the following theorem, answering the
question of Arhangel’skij [Ar, problem 15], holds.

Theorem 1.3. A space X is weakly C-embedded into every larger Tychonoff space
Y , containing X as a closed subspace, if and only if X is either almost compact,
or Lindelöf.

In [Ar] it was also asked to characterize the spaces which are (strongly) rela-
tively normal in every larger Tychonoff space (Problems 49 and 50); see also [AT,
Problems 3 and 4]. A subspace X ⊂ Y is called (strongly) relatively normal in Y if
every two disjoint closed in Y (closed in X) subsets of X can be separated by open
in Y subsets (see [Ar] for a recent survey on relative topological properties).

In [AT] it was observed that all normal almost compact spaces and in [AG] that
all Lindelöf spaces are strongly relatively normal in every larger Tychonoff space.

We prove here that “the converse” is true.

Theorem 1.4. If X is a Tychonoff space, then the following conditions are equiv-
alent:

1. X is either normal and almost compact or Lindelöf.
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2. X is strongly normal in every Tychonoff space.
3. X is normal in every Tychonoff space.
4. X is normal in every Tychonoff space, containing X as a closed subspace.
5. X is normal and every pair of non-compact disjoint closed subsets of X con-

sists of Lindelöf sets.

2. Proofs

Lemma 2.1. Let P and Q be disjoint closed sets of a space X. If any Tychonoff
space Y , which contains X as a closed subspace, has two disjoint open sets separat-
ing P and Q, then either both P and Q are Lindelöf, or one of them is compact.

Proof. Take two disjoint closed subsets P and Q of X and suppose that both are
non-compact and P is not Lindelöf.

Lemma 2.2. λ(Q) ≥ l(P ) > ω.

Proof of Lemma 2.2. Assuming the contrary, there is A ⊂ Q so that ClQ A is non-
compact and |A| < l(P ) = τ.

Since |A| < τ, there is an open cover γ of the space P having no subcover of size
≤ |A|. We may assume that γ has no subcover of size less than |γ| = τ ′. Consider
αP = ClβX P — a compactification of P. Then it is easy to see that there is a
Z ⊂ αP such that Z can be separated from P in αP by a Gτ ′-set, but cannot be
separated from P by any Gβ-set for β < τ ′ [En, Ex. 3.12.24]. Since P is closed in
X, αP ∩ X = P and Z ⊂ (βX \X). Since ClQ A is not compact and Q is closed
in X , there is a point a ∈ βX \X so that a ∈ ClβX A. Consider a compactification
C of the space X , obtained from βX by identifying the compact set Z ∪ {a} to a
point b.

Let S = P ∪ Q ∪ {b} ⊂ C and T = S × S \ {(b, b)}. We claim that the closed
subsets of T, P×{b} and {b}×Q cannot be separated in T by open sets. Indeed, let
U be an open subset of T such that {b}×Q ⊂ U . For every x ∈ A ⊂ Q there exist
open neighborhoods Vx and Wx of the points b and x in S such that Vx ×Wx ⊂ U .
The set G =

⋂{Vx : x ∈ A} is a Gβ set containing b with β = |A| < τ ′. Thus G
meets P , say for instance in a point y. It follows that {y} × A ⊂ U and, since in
S the point b is in the closure of A, we actually have (y, b) ∈ ClT {y} ×A ⊂ ClT U .
Hence we cannot have P × {b} ∩ClT U = ∅.

As a consequence, we see that X is not normal in the quotient space of X ⊕ T,
obtained by identifying P with P × {b} and Q with {b} × Q. This contradiction
finishes the proof of the Lemma 2.2.

Lemma 2.3. l(Q) ≥ λ(Q), in particular Q is not Lindelöf.

Proof of Lemma 2.3. If l(Q) = τ < λ(Q), then the closure in Q of any set of
cardinality at most τ is compact. In particular, Q is initially τ -compact and hence
compact since l(Q) = τ . But this contradicts the assumption that Q is not compact.

Lemma 2.4. λ(P ) ≥ l(Q).

Proof of Lemma 2.4. Use the same argument as in the proof of Lemma 2.2.

Lemma 2.5. λ(P ) = l(P ) = λ(Q) = l(Q) = τ > ω and τ is a regular cardinal.
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Proof of Lemma 2.5. λ(P ) = l(P ) = λ(Q) = l(Q) = τ > ω follows from Lemmas
2.2–2.4. Suppose cf(τ) = µ < τ, i.e. τ = sup{aα : a < µ}. Since P is not Lindelöf,
we can take an uncountable open cover γ of the space P, having no subcover of size
less than |γ|. We claim that |γ| = τ. Since l(P ) = τ, |γ| ≤ τ. If |γ| < τ, then, as P
is |γ|-initially compact, γ would have a finite subcover. So, |γ| = τ. Well order γ as
γ = {Uα : α < τ}. For every α < µ let Wα =

⋃{Uβ : β < aα}. Now, {Wα : α < µ}
is a cover of P of size less than τ, so it has a finite subcover. Hence γ has a subcover
of size less than τ—a contradiction.

Now we continue the proof of Lemma 2.1.

Preliminary construction. By transfinite induction we shall construct in P some-
thing like an enlarged closed copy of the ordinal τ.

Since l(P ) = λ(P ) = τ, the proof of Lemma 2.5 shows that there is an open cover
γ of size τ having no subcover of size less than τ. Hence by the same argument as
in the proof of Lemma 2.2, there is a compact Z ⊂ αP = ClβX P such that Z can
be separated from P in αP by a Gτ -set, but cannot be separated from P by any
Gβ-set for β < τ.

By transfinite induction define for every α < τ a compact subset Fα ⊂ P and
an open in αP neighborhood Wα ⊃ Z in such a way that

(1) Fα ⊂
⋂{ClαP Wβ : β < α},

(2) ClαP Wα ∩
⋃{Fβ : β ≤ α} = ∅, in particular all Fα are disjoint,

(3) if α is a non-limit ordinal, then Fα is a one-point-set Fα = {xα},
(4) if α is a limit ordinal, then

Fα = ClP
⋃
{Fβ : β < α} \

⋃
{Fβ : β < α},

(5) d(
⋃{Fβ : β < α}) ≤ α,

(6) for every α < τ,
⋃{Fβ : β ≤ α} is a compact subset of P.

Take an arbitrary x ∈ P as x0, and let F0 = {x0} and W0 be an arbitrary neigh-
borhood of Z so that x0 6∈ ClαP W0.

Let α < τ and suppose that for all β < α we have Fβ and Wβ satisfying conditions
(1)–(6). Consider two possibilities:

I. α = α′ + 1. Since Z cannot be separated from P by Gα′ -sets, there is a point
xα ∈ P ∩⋂{Wβ : β ≤ α′}. Let Fα = {xα}. Clearly conditions (1),(3),(5),(6)
are satisfied for α. From (6) it follows that there is an open neighborhood Wα

of Z so that ClαP Wα ∩
⋃{Fβ : β ≤ α} = ∅. Of course, even (2) is satisfied

and we are done for α.
II. α is limit ordinal. Let F ′

α = ClP
⋃{Fβ : β < α}. Since (5) is true for each

β < α and α < λ(P ), it follows that F ′
α is a compact subset of P. From (1),

(2) and (6) for each β < α we have

Fα = F ′
α \

⋃
{Fβ : β < α} = F ′

α ∩
⋂
{ClαP Wβ : β < α}.

In particular, Fα is compact. Since F ′
α is a compact subset of P , there is an

open neighborhood Wα of Z so that ClαP Wα ∩ F ′
α = ∅. Now all conditions

(1)–(6) are clearly satisfied and we are done for α.

Clearly, the Wα’s may be chosen in such a way that in addition Z =
⋂{ClαP Wα :

α < τ}. It then follows that F =
⋃{Fα : α < τ} is closed in P.
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The preliminary construction is now complete. We can think about F as a closed
copy of τ in P where all non-limit ordinals are usual points, but all limit ordinals
are enlarged to (maybe non-trivial) compact sets.

Next, apply the same method to get a similar “copy of τ” G =
⋃{Gα : α < τ}

in Q.
Now we are ready to embed X in a space Y in such a way that the sets P and Q

cannot be separated by open sets in Y . Let T = (τ +1)× (τ +1)\{(τ, τ)}. We shall
use the well known fact that closed copies of τ in T such as the diagonal ∆ ⊂ T
and τ × {τ} cannot be separated by open sets in T (see [Wa, Lemma 2.1.12]).

The idea of our construction is to “replace” here ∆ and τ ×{τ} by F and G and
then “glue” the resulting space to X.

Let T ′ be the set of all points in τ × τ \∆ having both coordinates non-limit.
The space Y we are looking for is X ∪ T ′ equipped with the following topology:

(1) All points of T ′ are isolated.
(2) All points x ∈ X \ (F ∪G) have usual neighborhood base in X.
(3) All points x ∈ ⋃{Fα : α is non-limit} have usual neighborhood base in X.
(4) Let x ∈ Fα and α be a limit ordinal. For every open in X a neighborhood W

of x define a neighborhood W ′ of x in Y as

W ′ = W ∪ {(a, b) ∈ T ′ : Fa ⊂ W and Fb ⊂ W}.
Notice that, in the above formula, a and b are non-limit ordinals, so Fa and
Fb are one-point-sets.

(5) Let x ∈ Gα and α be a non-limit ordinal. For every open in X neighborhood
W of x and every b < τ define a neighborhood W ′

b of x in Y as

W ′
b = W ∪ {(α, c) ∈ T ′ : c > b}.

(6) Let x ∈ Gα and α be a limit ordinal. For every open in X neighborhood W
of x and every b < τ define a neighborhood W ′

b of x in Y as

W ′
b = W ∪ {(a, c) ∈ T ′ : Ga ⊂ W and c > b}.

Notice that, in the above formula, a is a non-limit ordinal, so Ga is a one-
point-set.

It is tedious but not difficult to realize that Y is a Tychonoff space and X is
closed in Y.

We claim that F and G cannot be separated in Y by open sets. Take an arbitrary
open set U of Y containing F. We shall prove that ClY U ∩G 6= ∅. Take for every
limit α < τ a point xα ∈ Fα and basic neighborhood W ′(xα) ⊂ U. Observe that, by
definition of Fα, the set Bα = {b < α : b is non-limit and Fb ⊂ W} is unbounded
in α. For every α pick an arbitrary f(α) ∈ Bα. Since for each α f(α) < α, we can
apply the Pressing-Down Lemma [Ku, Theorem 2.3] to find a non-limit b < τ so
that b = f(α) for unboundedly (in τ) many α. We claim that for every c < τ there
are d > c and α ∈ f−1(b) so that (b, d) ∈ W ′(xα). Indeed, there is α ∈ f−1(b)
with α > c. Since Bα is unbounded in α, there is d ∈ Bα with d > c. Now both
b, d ∈ Bα, hence (b, d) ∈ W ′(xα) and our claim holds. Next, consider Gb and recall
that, since b is a non-limit ordinal, Gb is a one-point-set, Gb = {g}. From the last
claim it immediately follows that g ∈ ClY U , therefore ClY U ∩G 6= ∅ and the proof
of Lemma 2.1 is complete.
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Lemma 2.6. If X is weakly C-embedded in every larger Tychonoff space Y , con-
taining X as a closed subspace, then for every two disjoint completely separated
closed subsets P and Q of X either both are Lindelöf or one of them is compact.

Proof. Let f : X → R be a continuous function such that f(P ) = {0} and f(Q) =
{1}. Suppose that X is a closed subspace of a space Y. By our assumption, there
is a function f̃ : Y → R, which is continuous at every point of X and satisfies
f̃ |X = f . Consequently, P and Q are separated by open sets in Y and hence, by
Lemma 2.1, either both P and Q are Lindelöf or one of them is compact.

Proof of Theorem 1.3. Sufficiency — the only part we need to prove — follows from
Lemma 2.6 and the result of Blair, Hager and Johnson cited in the introduction.

Proof of Theorem 1.4. 1 ⇒ 2 was observed in [AT]. 5 ⇒ 1 follows from the result
of Blair, Hager and Johnson, cited in the introduction. 2 ⇒ 3 ⇒ 4 is evident. 4 ⇒ 5
follows from Lemma 2.1 and the fact that X is normal, being relatively normal in
itself.

Proof of Theorem 1.1. 1 ⇒ 2 is easy. 2 ⇒ 1 follows from Lemma 2.1 for P = X1,
Q = X2 and X ⊕X “as” X.
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